
MATH 565 Monte Carlo Methods in Finance

Fred J. Hickernell Fall 2011

Take-Home Final Due 2 pm, Thursday, December 8

Instructions:

i. This take-home part of the final exam has THREE questions. You may attempt as many as you like.
Your score will consist of your best TWO answers for a total possible of 50 marks.

ii. You may consult any book, web page, software repository, notes, old tests, or other inanimate ob-
ject. You may use the m-files on Blackboard. You may not consult any other person face-to-face, by
telephone, by email, Facebook, Twitter, LinkedIn or by any other means.

iii. Show all your work to justify your answers. Submit hard copies of your derivations, programs, output,
and explanations to my mail box in E1-208. (Off-site students only may submit by email or Blackboard
Dropbox.) Answers without adequate justification will not receive credit.

iv. In addition, as a precaution, submit soft copies of your programs to the Blackboard Dropbox. If I have
difficulty understanding your computational work, I may look at your programs.

1. (25 marks)
Consider the problem of approximating

µ =

∫
∞

−∞

∫
∞

−∞

cos(x2 + y2) e−(x2+y2)/2 dxdy.

Use both simple Monte Carlo and scrambled Sobol’ sequences to evaluate this integral to
absolute error tolerances of 0.02, 0.01, 0.005, 0.002, 0.001, and 0.0005.

• Record the time, t, and sample size, n, needed by each method for each tolerance. Which
method works better for which tolerances?

• Decide what is the maximum sample size that is feasible for each method for your com-
puting environment. If the sample size required is more than the maximum, then record
a failure by the method. Which method(s) fails for which tolerances?

• For simple Monte Carlo, estimate the sample size needed using the Central Limit Theorem
approximation.

• For scrambled Sobol’ sampling, use m = 30 different scramblings of the Sobol’ sequence,
and estimate the error using the mean of each different scrambling. Starting from an
initial sample size, continue to double the sample size for the Sobol’ sequences until the
error tolerance is met.

%% Garbage collection

close all, clear all, format compact

%% Problem 1

tolvec=[0.05 0.02 0.01 0.005 0.002 0.001 0.0005];

for ii=1:length(tolvec);

tol=tolvec(ii); %error tolerance

%% Simple Monte Carlo

n0=1000; %initial sample size

d=2; %dimension

1

nmax=1e8/d; %maximum feasible sample size

muhatstr=’??? out of memory’; %answer in string form

fun=@(x) (2*pi)*cos(sum(x.*x,2)); %integrand

%Initial sample

tstart=tic;

x=randn(n0,d); %standard Gaussian random vectors

fx=fun(x); %integrand values

stdf0=std(fx); %standard deviation of function values

n=ceil(1.5*(1.96*stdf0/tol)^2);

if n<=nmax;

x=randn(n,d); %standard Gaussian random vectors

muhat=mean(fun(x)); %approximation to the integral

muhatstr=num2str(muhat);

end

tMC=toc(tstart);

disp(’By i.i.d. sampling’)

disp([’Integral = ’ muhatstr ’ +/- ’ num2str(tol)])

disp([’ samples required = ’ num2str(n+n0)])

disp([’ time elapsed = ’ num2str(tMC)])

%% Sobol’ sampling

tstart=tic;

%Create scrambled Sobol’ samples

nrep=30;

nmax=1e8/(d*nrep);

Sob=sobolset(d);

ScrSob=cell(nrep);

for i=1:nrep

ScrSob{i}=scramble(Sob,’MatousekAffineOwen’);

end

%Keep increasing sample size until done

overallmean=0;

n=0;

nnext=2; %initial sample size

sumpc=zeros(1,nrep);

errest=inf;

while errest>tol && n<nmax

fxpc=zeros(nnext,nrep);

for i=1:nrep

fxpc(:,i)=fun(norminv(net(ScrSob{i},nnext)));

end

sumpc=sumpc+sum(fxpc,1);

n=n+nnext;

meanpc=sumpc/n;

errest=1.96*std(meanpc)/sqrt(nrep);

nnext=2*nnext;

2

end

muhat=mean(meanpc); %approximation to the integral

tSob=toc(tstart);

disp(’By Sobol sampling’)

disp([’Integral = ’ num2str(muhat) ’ +/- ’ num2str(tol)])

disp([’ samples required = ’ num2str(n*nrep)])

disp([’ time elapsed = ’ num2str(tSob)])

disp(’ ’)

end

By i.i.d. sampling

Integral = 1.2484 +/- 0.05

samples required = 45812

time elapsed = 0.023991

By Sobol sampling

Integral = 1.2853 +/- 0.05

samples required = 15300

time elapsed = 0.29357

By i.i.d. sampling

Integral = 1.2421 +/- 0.02

samples required = 279955

time elapsed = 0.02125

By Sobol sampling

Integral = 1.2551 +/- 0.02

samples required = 61380

time elapsed = 0.09722

By i.i.d. sampling

Integral = 1.2619 +/- 0.01

samples required = 1102487

time elapsed = 0.073093

By Sobol sampling

Integral = 1.2566 +/- 0.01

samples required = 122820

time elapsed = 0.11338

By i.i.d. sampling

Integral = 1.2565 +/- 0.005

samples required = 4284101

time elapsed = 0.24531

By Sobol sampling

Integral = 1.2555 +/- 0.005

samples required = 245700

time elapsed = 0.13352

By i.i.d. sampling

Integral = 1.2563 +/- 0.002

samples required = 27798951

3

time elapsed = 1.5416

By Sobol sampling

Integral = 1.2572 +/- 0.002

samples required = 982980

time elapsed = 0.24516

By i.i.d. sampling

Integral = ??? out of memory +/- 0.001

samples required = 112290891

time elapsed = 0.02439

By Sobol sampling

Integral = 1.2571 +/- 0.001

samples required = 1966020

time elapsed = 0.40106

By i.i.d. sampling

Integral = ??? out of memory +/- 0.0005

samples required = 457644002

time elapsed = 0.00025149

By Sobol sampling

Integral = 1.2568 +/- 0.0005

samples required = 7864260

time elapsed = 1.2534

Answer: For larger tolerances, in this case 0.01 or greater, i.i.d. sampling is faster, but for
smaller tolerances, Sobol’ sampling is faster.

2. (25 marks)
One kind of low discrepancy set that is related to the linear congruential generator is the
integration lattice. The idea is to run a small linear congruential generator to its full period
and include the point zero. For this problem we consider an artificially small case in dimension
d = 2. The integration lattice is defined by

xi = (xi1, xi2) = (1, a)i/n (mod 1), i = 0, . . . , n− 1.

It is not necessary that a be a primitive root, but only relatively prime with respect to n.
For n = 19 find the best generator, a, by visual inspection, and by using either one of the
spectral tests or a discrepancy measure (your choice) for dimension 2. Note that by symmetry
arguments, you only need to consider a = 1, . . . , 9.

%% Spectral Test for Integration Lattice

clear all

tic

n=19;

disp([’For n = ’ int2str(n)])

na=floor(n/2);

4

aposs=(1:na)’; %possible a values

naposs=length(aposs); %number of possible a values

disp(’The possible values of the parameter a are:’)

disp(aposs’)

nplotx=ceil(sqrt(na));

nploty=ceil(na/nplotx);

for ii=1:na

subplot(nplotx,nploty,ii)

plot((0:n-1)/n,mod((0:n-1)*ii/n,1),’b.’,’markersize’,20)

title([’a = ’ int2str(ii)])

end

print -depsc aplot.eps

%% Perform the Spectral Test for d=2

nucand1d=(-n:n)’; %1d candidate wave numbers

[nu1cand2d,nu2cand2d]=ndgrid(nucand1d);

nucand2d=[nu1cand2d(:) nu2cand2d(:)];

nucand2d=nucand2d(any(nucand2d~=0,2),:);

dotprod=mod(nucand2d*[ones(1,naposs); aposs’],n);

whdual=dotprod==0;

l1minnorm=zeros(naposs,1);

l2minnorm=l1minnorm;

whl1minnu=zeros(naposs,2);

whl2minnu=whl1minnu;

for j=1:naposs;

nudual2d=nucand2d(whdual(:,j),:);

norm1dual=sum(abs(nudual2d),2);

norm2dual=sqrt(sum(nudual2d.*nudual2d,2));

[l1minnorm(j),whmin]=min(norm1dual);

whl1minnu(j,:)=nudual2d(whmin(1),:);

[l2minnorm(j),whmin]=min(norm2dual);

whl2minnu(j,:)=nudual2d(whmin(1),:);

end

disp(’The l1 spectral test is’)

disp(l1minnorm’)

disp(’ attained at wavenumbers’)

disp(whl1minnu’)

besta=aposs(l1minnorm==max(l1minnorm));

disp([’The best values of a according to this test are ’ int2str(besta’)])

disp(’ ’)

disp(’The l2 spectral test is’)

disp(l2minnorm’)

disp(’ attained at wavenumbers’)

disp(whl2minnu’)

besta=aposs(l2minnorm==max(l2minnorm));

disp(’ ’)

disp([’The best values of a according to this test are ’ int2str(besta’)])

toc

5

For n = 19

The possible values of the parameter a are:

1 2 3 4 5 6 7 8 9

The l1 spectral test is

2 3 4 5 5 4 5 5 3

attained at wavenumbers

1 2 3 4 1 -1 2 -3 -1

-1 -1 -1 -1 -4 -3 -3 -2 -2

The best values of a according to this test are 4 5 7 8

The l2 spectral test is

Columns 1 through 7

1.4142 2.2361 3.1623 4.1231 4.1231 3.1623 3.6056

Columns 8 through 9

3.6056 2.2361

attained at wavenumbers

1 2 3 4 1 -1 2 -3 -1

-1 -1 -1 -1 -4 -3 -3 -2 -2

The best values of a according to this test are 4 5

Elapsed time is 0.872689 seconds.

0 0.5 1
0

0.5

1
a = 1

0 0.5 1
0

0.5

1
a = 2

0 0.5 1
0

0.5

1
a = 3

0 0.5 1
0

0.5

1
a = 4

0 0.5 1
0

0.5

1
a = 5

0 0.5 1
0

0.5

1
a = 6

0 0.5 1
0

0.5

1
a = 7

0 0.5 1
0

0.5

1
a = 8

0 0.5 1
0

0.5

1
a = 9

6

Answer: The best values of a are 4 or 5.

3. (25 marks)
On November, 17, 2011, Google shares closed at $600.87 per share. The price of an American
put option expiring on January 18, 2014 with a strike price of $550 was $83.20. Assume
a geometric Brownian motion model for the price of Google, an interest rate of r = 1%, a
volatility of σ = 40% and d = 32 time steps. Does the Monte Carlo approximation to the
put price match the market price to the nearest dollar? If not, change one or more of the
parameters, r, σ, or d to match the market price to the nearest dollar. Explain why you
changed the parameter(s) that you decided to change.

Answer: The time to expiry for this option is 2.17 years. Using the OptionPrice.m program
one gets price of $103, which is higher than the market price. Changing the number of time
steps has a negligible effect, and the interest rate should not be changed too much because 1%
is close to the market rate. The biggest influence is the volatility. By decreasing that to about
34% we get a price close to the market price.

Using 100000 asset price samples based on a

discrete geometric Brownian motion model of the asset

with sampling method:

independent and identically distributed

For an initial asset price of $600.87

a strike price of $550.00

2.17 years to maturity

an interest rate of 1.00%

a volatility of 40.00%:

For American put options monitored 32 times

The put price is $103.80940.7002

Compared to the GBM European call price of $165.5380

and the GBM European put price of $102.8616

This computation took 0.53008 seconds

Using 100000 asset price samples based on a

discrete geometric Brownian motion model of the asset

with sampling method:

independent and identically distributed

For an initial asset price of $600.87

a strike price of $550.00

2.17 years to maturity

an interest rate of 1.00%

a volatility of 40.00%:

For American put options monitored 64 times

The put price is $103.49300.6940

Compared to the GBM European call price of $165.5380

and the GBM European put price of $102.8616

This computation took 0.80017 seconds

7

Using 100000 asset price samples based on a

discrete geometric Brownian motion model of the asset

with sampling method:

independent and identically distributed

For an initial asset price of $600.87

a strike price of $550.00

2.17 years to maturity

an interest rate of 1.00%

a volatility of 33.50%:

For American put options monitored 32 times

The put price is $83.14040.5966

Compared to the GBM European call price of $145.0312

and the GBM European put price of $82.3547

This computation took 0.38611 seconds

8

