
MATH 565 Monte Carlo Methods in Finance
Fred J. Hickernell Fall 2008
In-Class Part of Final Exam Wednesday, December 3

Instructions:

i. This exam consists of FOUR questions for a total of 50 points possible. Answer all of them.

ii. The time allowed for this exam is 120 minutes

iii. This exam is closed book, but you may use four double-sided letter-size sheets of notes.

iv. Show all your work to justify your answers. Answers without adequate justification will not receive
credit.

To solve some of the the problems in this exam you will need the following information. Please
refer to it as needed.

Here are sixteen uniformly distributed pseudorandom numbers, xi, and the respective inverse stan-
dard normal distribution of these xi, i.e., Φ−1(xi):

pseudorandom xi 0.1622 0.7943 0.3112 0.5285 0.1656 0.6020 0.2630 0.6541

Φ−1(xi) −0.9855 0.8214 −0.4924 0.0716 −0.9715 0.2585 −0.6342 0.3964

pseudorandom xi 0.6892 0.7482 0.4505 0.0838 0.2290 0.9133 0.1524 0.8258

Φ−1(xi) 0.4936 0.6687 −0.1243 −1.3798 −0.7422 1.3616 −1.0263 0.9378

where Φ(x) = 1√
2π

∫ x
−∞ e

−t2/2 dt. Here is Φ−1(x) for some evenly spaced numbers:

x 0 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

Φ−1(x) −∞ −1.534 −1.150 −0.887 −0.674 −0.489 −0.319 −0.157 0

x 9/16 10/16 11/16 12/16 13/16 14/16 15/16 1

Φ−1(x) 0.157 0.319 0.489 0.674 0.887 1.150 1.534 ∞

The discrete time geometric Brownian motion model for a stock price is

S(jT/d) = S(jT/d;X) = S(0) exp((r − σ2/2)jT/d+ σ
√
T/d (X1 + · · ·+Xj)),

j = 1, . . . , d, (1)

where the Xj are i.i.d. N(0, 1), d is the number of times at which the stock price is monitored, r
is the continuously compounded interest rate, S(0) is the initial stock price, T is the ending time,
and σ is the volatility of the stock.
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1. (12 points)
Consider the problem of estimating µ = E[Y ], the mean of the random variable Y . Here
Y = g(X) for some known function g, and X is a standard normal random variable, i.e., its
probability density function is φ(x) = 1√

2π
e−x

2/2. Thus, the mean of Y may be written as

µ =

∫ ∞
−∞

g(x)φ(x) dx.

One unbiased estimator of µ, depending on the sample size, n = 1, 2, . . . is the Simple Monte
Carlo estimator:

Ŷn,MC =
1

n
[g(X1) + · · ·+ g(Xn)] , where Xi i.i.d. N(0, 1).

Another unbiased estimator of µ, also depending on the sample size, is the Importance Sampling
estimator:

Ŷn,IS =
1

n
[h(Z1) + · · ·+ h(Zn)] ,

where Zi i.i.d. with probability density function fZ(z) =
1

2
e−|z|.

a) What is h(z) in terms of g(z)?

Answer: The integral defining the mean may be written equivalently as

µ =

∫ ∞
−∞

g(x)φ(x) dx =

∫ ∞
−∞

g(z)
φ(z)

fZ(z)
fZ(z) dz,

and so

h(z) = g(z)
φ(z)

fZ(z)
=

√
2

π
g(z)e−z

2/2+|z|.

b) Let W = h(Z). Suppose that var(Y ) = σ2, and var(W ) = cσ2 for some constants σ
and c. What are the root mean square errors of the Simple Monte Carlo and Importance
Sampling estimators in terms of σ, c, and n?

Answer: Since the Yi = g(Xi) are i.i.d. with common variance σ2, it follows that var
(
Ŷn,MC

)
=

σ2/n, and the root mean square error for the Simple Monte Carlo is σ/
√
n. Similarly,

since the Wi = h(Zi) are i.i.d. with common variance cσ2, it follows that var
(
Ŷn,IS

)
=

cσ2/n, and the root mean square error for the Importance Sampling is σ
√
c/n.

c) For n = 100, you compute both a Simple Monte Carlo and an Importance Sampling
estimate. The sample variance of the Yi is 0.250 and the sample variance of the Wi is
0.0625. What do you estimate c to be?

Answer:

c =
var (W )

var (Y )
≈ v̂ar (W )

v̂ar (Y )
=

0.0625

0.250
=

1

4
.

.
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d) How large should n be to obtain confidence intervals of half-width 0.001 for these two
estimators? If the time required to compute these estimators is 0.0005n seconds, then
how much time is saved by using Importance Sampling over Simple Monte Carlo?

Answer: The half-width of the confidence interval of an estimator Ŷn based on n i.i.d.
samples Yi is 1.96

√
v̂ar(Y1)/n, so we want for Simple Monte Carlo

0.001 ≥ 1.96

√
0.250

n
=⇒ n = 0.250

(
1.96

0.001

)2

= 960400

and for Importance Sampling

0.001 ≥ 1.96

√
0.0625

n
=⇒ n = 0.0625

(
1.96

0.001

)2

= 240100

Importance Sampling takes 1/4 the number of operations and 1/4 the time: about two
minutes rather than eight minutes for Simple Monte Carlo.

2. (12 points)
A zero-inflated Poisson random variable, Y , describes how many crashes of computers in a
lab occur in a month. This random variable takes on non-negative integer values and has a
probability mass function

fY (y) = Pr(Y = y) =

{
0.4, y = 0,

0.6
(e−1)y! , y = 1, 2, . . . .

a) Using the uniform pseudorandom numbers above, compute five i.i.d. samples, Y1, . . . , Y5,
where the Yi come from the distribution described above.

Answer: The cumulative distribution function of Y is given by FY (y) = fY (0)+· · ·+fY (y),
or in tabular form:

y 0 1 2 3 · · ·
fY (y) 0.4000 0.3492 0.1746 0.0582 · · ·
FY (y) 0.4000 0.7492 0.9238 0.9820 · · ·

This translates into an inverse cumulative probability distribution given by

x 0 ≤ x ≤ 0.4000 0.4000 < x ≤ 0.7492 0.7492 < x ≤ 0.9238 0.9238 < x ≤ 0.9820

F−1Y (x) 0 1 2 3

Reading from this table, the inverse cumulative distribution function of the first five pseu-
dorandom numbers are

F−1Y (0.1622) = 0, F−1Y (0.7943) = 2, F−1Y (0.3112) = 0,

F−1Y (0.5285) = 1, F−1Y (0.1656) = 0.
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b) Using the uniform pseudorandom numbers above, compute five stratified samples with five
strata and one sample per stratum, Y1, . . . , Y5, where the Yi come from the distribution
described above.

Answer: First we generate a uniform stratified sample:

z1 =
0 + 0.1622

5
= 0.0324, z2 =

1 + 0.7943

5
= 0.3589, z3 =

2 + 0.3112

5
= 0.4622,

z4 =
3 + 0.5285

5
= 0.7057, z5 =

4 + 0.1656

5
= 0.8331.

The inverse cumulative distribution function of the first five pseudorandom numbers are

F−1Y (0.0324) = 0, F−1Y (0.3589) = 0, F−1Y (0.4622) = 1,

F−1Y (0.7057) = 1, F−1Y (0.8331) = 2.

c) The true mean number of computer crashes per month from this zero-inflated Poisson
distribution is 0.9492. Estimate the mean number of crashes per month based on the
simple random sample in part a) and based on the stratified sample in part b). Which of
these two estimates is closer to the true answer?

Answer:

µ̂MC =
1

5
(0 + 2 + 0 + 1 + 0) = 0.6, µ̂SS =

1

5
(0 + 0 + 1 + 1 + 2) = 0.8,

so the stratified sampling estimate is more accurate.

3. (14 points)
The following table shows four possible sets of 8 points: two based on the pseudorandom
numbers at the beginning of the exam, one 4× 2 grid, and one rank-1 lattice:

i Pseudorandom xi Pseudorandom xi Grid xi Rank-1 Lattice xi
1 (0.1622, 0.7943) (0.1622, 0.6892) (1/8, 1/4) (1/16, 1/16)
2 (0.3112, 0.5285) (0.7943, 0.7482) (3/8, 1/4) (3/16, 7/16)
3 (0.1656, 0.6020) (0.3112, 0.4505) (5/8, 1/4) (5/16, 13/16)
4 (0.2630, 0.6541) (0.5285, 0.0838) (7/8, 1/4) (7/16, 3/16)
5 (0.6892, 0.7482) (0.1656, 0.2290) (1/8, 3/4) (9/16, 9/16)
6 (0.4505, 0.0838) (0.6020, 0.9133) (3/8, 3/4) (11/16, 15/16)
7 (0.2290, 0.9133) (0.2630, 0.1524) 5/8, 3/4) (13/16, 5/16)
8 (0.1524, 0.8258) (0.6541, 0.8258) (7/8, 3/4) (15/16, 11/16)

a) Note that the two sets of 8 two-dimensional pseudorandom points are constructed from
the 16 pseudorandom points at the beginning of the exam but using different orderings.
Which of these two pseudorandom sets is a more valid construction of numbers to emulate
i.i.d. uniform samples X1, . . . ,X8, or are they both equally valid? Explain your answer.

Answer: Because the pseudorandom numbers are meant to emulate i.i.d. uniform random
numbers, combining them in either order to obtain the two-dimensional vectors is equally
valid.
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b) The rank-1 integration lattice is a deterministic set of points meant to be evenly spread
over the unit square. Explain how the points in the rank-1 lattice are more evenly spread
than pseudorandom or grid points.

Answer: The rank-1 lattice has eight different evenly spaced values for each coordinate.
This is not the case for a grid. Also the points do not leave as much empty spaces between
them like the pseudorandom points do.

c) Consider the three estimators of the double integral µ =
∫ 1
0

∫ 1
0 g(x) dx1dx2 that take the

following form:

µ̂ =
1

8

8∑
i=1

g(zi),

where


i) the zi are i.i.d. uniform random vectors in [0, 1]2

ii) the zi are the points in the rank-1 integration lattice above, or

iii) zi = xi + ∆ (mod 1), the xi are the points in the rank-1 integration lattice

above and ∆ is a uniform random vector in [0, 1]2.

Which one or more of these three estimators are unbiased? Which one or more of these
estimators have zero variance?

Answer: The first and third estimators are unbiased because E[g(zi)] = µ in these two
cases. The second estimator has zero variance because it is deterministic.

d) The rank-1 integration lattice is a deterministic set of points meant to be evenly spread
over the unit square. If the coordinates of the points in the rank-1 integration lattice are
rearranged as follows, are the points still evenly spread? Explain why or why not.

i Rearranged Point Coordinates Rank-1 Lattice xi
1 (1/16, 9/16)
2 (1/16, 9/16)
3 (3/16, 11/16)
4 (7/16, 15/16)
5 (5/16, 13/16)
6 (13/16, 5/16)
7 (7/16, 15/16)
8 (3/16, 11/16)

Answer: No, the coordinates of the points of the rank-1 lattice are not i.i.d. random
numbers. The rearranged net does not have evenly spread points. Also, some points are
repeated for this rearranged lattice.

4. (12 points)
Consider a discretely monitored down and out put option that has a life of T = 1 year, and
is monitored at times 1/2 year and 1 year. This option pays off if the stock price at T = 1
lies below the strike price but the stock price has not fallen below the barrier at times t = 1/2
or 1. Assume the discrete time geometric Brownian motion model for the stock price (1) with
S(0) = 100, r = 3%, σ = 70%, a barrier price for the option of 60 and a strike price of K = 100.
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a) Using the pseudorandom numbers above, compute one stock path.

Answer: Here d = 2, and so T/d = 1/2. We use the uniform xi above and then compute
zij = Φ−1(xij) using the table above. Thus,

S(1/2) = 100 exp
(

(0.03− 0.72/2)(1/2) + 0.7
√

1/2(−0.9855)
)

= 55.14,

S(1) = 55.14 exp
(

(0.03− 0.72/2)(1/2) + 0.7
√

1/2(0.8214)
)

= 74.36.

b) Below are seven more stock paths.

Path S(0) S(1/2) S(1)

2 100 70.38 65.48
3 100 55.52 56.66
4 100 114.66 143.37
5 100 62.19 109.59
6 100 94.19 316.15
7 100 44.52 37.23
8 100 48.50 104.77

Which of these eight paths (the one from part a) and the seven above) have a positive
payoff?

Answer: Paths 2, 4, 5, and 6 stay above the barrier, and of these only path 2 is in the
money at t = 1.

c) What is the estimated price for this option based on these eight paths?

Answer: The average discounted payoff for the 8 paths is

1

8
(100− 65.48)e−0.03 = 4.19,

which corresponds to the estimated option price.

d) Using the first point of the rank-1 lattice above in the beginning of question 3, compute
one stock path. What is the payoff for this stock path?

Answer: Again d = 2, and we compute zij = Φ−1(xij), but now for the rank-1 lattice.
Thus,

S(1/2) = 100 exp
(

(0.03− 0.72/2)(1/2) + 0.7
√

1/2(−1.534)
)

= 42.03,

S(1) = 42.03 exp
(

(0.03− 0.72/2)(1/2) + 0.7
√

1/2(−1.534)
)

= 17.67.

This path falls below the barrier and does not pay off.
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