MATH 565 Monte Carlo Methods in Finance

Fred J. Hickernell

In-Class Final Exam

Tuesday, December 9, 2014

Instructions:

- i. This in-class part of the final exam has FOUR questions for a total of 65 points possible. You should attempt them all.
- ii. The time allowed is 120 minutes.
- iii. This test is closed book, but you may use 4 double-sided letter-size sheets of notes.
- iv. (Programmable) calculators are allowed, but they must not have stored text.
- v. Show all your work to justify your answers. Answers without adequate justification will not receive credit.
- vi. Off-site students may contact the instructor at 630-696-8124.

1. (15 points)

Consider a sequence of IID random samples, Y_1, Y_2, \ldots

a) If the sample mean and variance of the first $n = 10^4$ random variables are $\hat{\mu}_{10000} = 47.29$ and $s_{10000}^2 = 13.56$, respectively, construct an approximate Central Limit Theorem 99% confidence interval for the true (population) mean of Y.

Answer:

$$\hat{\mu}_{1000} \pm \frac{2.58s_{10000}}{\sqrt{10000}} = 47.29 \pm 0.0949 = [47.20, 47.38]$$

b) For the situation in part a), how large a sample size would be required to make the half-width of the confidence interval no greater than 0.01?

Answer:

$$0.01 \ge \frac{2.58s_{10000}}{\sqrt{n}} \implies n \ge \lceil 258^2 \times 13.56 \rceil \approx 9.00 \times 10^5$$

c) Suppose that 4123 of the first 10000 Y_i are at least as large as 50. Based on the Central Limit Theorem, construct an approximate 99% confidence interval for $Pr(Y \ge 50)$.

Answer: The sample proportion is $\hat{p}_{10000} = 0.4123$, and so an approximate CLT confidence interval is

$$\hat{p}_{10000} \pm \frac{2.58\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{10000}} = 0.4123 \pm 0.0127 = [0.3996, 0.4250]$$

2. (10 points)

Let $f: \mathbb{R} \to \mathbb{R}$ be some function whose integral you wish to compute with respect to a non-negative weight function, w, i.e.,

$$\mu = \int_{-\infty}^{\infty} f(x) w(x) dx = ?$$

Let $W(x) := \int_{-\infty}^{x} w(t) dt$, and let $C = \lim_{x \to \infty} W(x)$. Let U_1, \ldots, U_n be IID $\mathcal{U}[0, 1]$ random variables. Use these U_i to construct an unbiased estimate for μ .

Answer: First perform a change of variable. Let y = W(x) and $x = W^{-1}(y)$. Thus, dy = W'(x)dx and

$$\mu = \int_0^C f(W^{-1}(y)) \, \mathrm{d}y.$$

Next let y = Cu and u = y/C. Then

$$\mu = C \int_0^1 f(W^{-1}(Cu)) du.$$

Thus,

$$\hat{\mu}_n = \frac{C}{n} \sum_{i=1}^n f(W^{-1}(CU_i))$$

is an unbiased estimate of μ .

3. (20 points)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be some function whose integral you wish to compute with respect to a probability density function (PDF), ϱ , i.e.,

$$\mu = \int_{\mathbb{R}^d} f(\boldsymbol{x}) \, \varrho(\boldsymbol{x}) \, \mathrm{d} \boldsymbol{x}.$$

Suppose that it is difficult to generate random variables with PDF ϱ , but easy to generate random variables with PDF $\tilde{\varrho}$. Moreover, for some c > 0, $c\varrho(\boldsymbol{x}) \leq \tilde{\varrho}(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathbb{R}^d$.

a) Construct an estimate of μ using acceptance-rejection sampling with $\widetilde{\boldsymbol{X}}_1, \ldots, \widetilde{\boldsymbol{X}}_n$ IID $\sim \tilde{\varrho}$ and U_1, \ldots, U_n IID $\mathcal{U}[0, 1]$ that are also independent from the $\widetilde{\boldsymbol{X}}_i$.

Answer: The acceptance-rejection method does a loop

Let
$$j = 0$$

For
$$i = 1, \ldots, n$$

If
$$U_i \leq c\varrho(\widetilde{\boldsymbol{X}}_i)/\widetilde{\varrho}(\widetilde{\boldsymbol{X}}_i)$$
, then let $j = j + 1$ and $\boldsymbol{X}_j = \widetilde{\boldsymbol{X}}_i$.

End

Let
$$N = i$$
.

The estimate is then

$$\hat{\mu}_{\mathrm{AR},N} = \frac{1}{N} \sum_{j=1}^{N} f(\boldsymbol{X}_j).$$

b) Construct an estimate of μ using importance sampling with $\widetilde{\boldsymbol{X}}_1,\dots,\widetilde{\boldsymbol{X}}_n$ IID $\sim \tilde{\varrho}$.

Answer: We re-write the integral as

$$\mu = \int_{\mathbb{R}^d} f(\boldsymbol{x}) \, rac{\varrho(\boldsymbol{x})}{\tilde{\varrho}(\boldsymbol{x})} \tilde{\varrho}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$$

So we now think of this as an integral with respect to the density $\tilde{\varrho}$ and the estimate is

$$\hat{\mu}_{\mathrm{IS},n} = \frac{1}{n} \sum_{i=1}^{n} f(\widetilde{\boldsymbol{X}}_i) \frac{\varrho(\widetilde{\boldsymbol{X}}_i)}{\tilde{\varrho}(\widetilde{\boldsymbol{X}}_i)}$$

c) What are the differences between these two estimates?

Answer: The importance sampling estimate uses all of the \widetilde{X}_i , whereas the acceptance-rejection method uses only some of the \widetilde{X}_i . We may also think of the integral as

$$\mu = \frac{1}{c} \int_{\mathbb{R}^d} \int_0^1 f(\boldsymbol{x}) \, \mathbb{1}_{[0, c\varrho(\boldsymbol{x})/\tilde{\varrho}(\boldsymbol{x})]}(u) \, \tilde{\varrho}(\boldsymbol{x}) \, \mathrm{d}u \, \mathrm{d}\boldsymbol{x}.$$

Applying importance sampling to this integral would yield

$$\widetilde{\mu}_{\mathrm{IS},n} = \frac{1}{cn} \sum_{i=1}^{n} f(\widetilde{\boldsymbol{X}}_i) \mathbb{1}_{[0,c\varrho(\widetilde{\boldsymbol{X}}_i)/\widetilde{\varrho}(\widetilde{\boldsymbol{X}}_i)]}(U_i) = \frac{1}{cn} \sum_{j=1}^{N} f(\boldsymbol{X}_j),$$

which is similar to $\hat{\mu}_{AR,N}$. The only difference is that the former uses $cn = \mathbb{E}(N)$ rather than N in the factor on the left.

4. (20 points)

Consider a basket European call option based on two stocks, $S^{(1)}$, and $S^{(2)}$, modeled by two independent geometric Brownian motions, $B^{(1)}$ and $B^{(2)}$, as follows

$$S^{(1)}(t) = 100 \mathrm{e}^{-0.125t + 0.5B^{(1)}(t)}, \ S^{(2)}(t) = 100 \mathrm{e}^{-0.08t + 0.4B^{(3)}(t)}, \ B^{(3)}(t) := 0.6B^{(1)}(t) + 0.8B^{(2)}(t).$$

The interest rate is assumed to be zero. The time to expiry, T, is three months. The payoff of the option is $\max\{S^{(1)}(T) - 100, S^{(2)}(T) - 100, 0\}$.

a) What are $\mathbb{E}[B^{(3)}(t)]$ and $\mathbb{E}[B^{(3)}(t)B^{(3)}(t+s)]$ for $s \ge 0$?

Answer: Since $B^{(1)}$ and $B^{(2)}$ are independent Brownian motions, it follows that

$$\mathbb{E}[B^{(3)}(t)] = \mathbb{E}[0.6B^{(1)}(t) + 0.8B^{(2)}(t)] = 0.6 \,\mathbb{E}[B^{(1)}(t)] + 0.8 \,\mathbb{E}[B^{(2)}(t)] = 0,$$

$$\mathbb{E}[B^{(3)}(t)B^{(3)}(t+s)] = \mathbb{E}[\{0.6B^{(1)}(t) + 0.8B^{(2)}(t)\}\{0.6B^{(1)}(t+s) + 0.8B^{(2)}(t+s)\}]$$

$$= 0.6^2 \,\mathbb{E}[B^{(1)}(t)B^{(1)}(t+s)] + (0.8)(0.6) \,\mathbb{E}[B^{(2)}(t)B^{(1)}(t+s)]$$

$$+ (0.6)(0.8) \,\mathbb{E}[B^{(1)}(t)B^{(2)}(t+s)] + 0.8^2 \,\mathbb{E}[B^{(2)}(t)B^{(2)}(t+s)]$$

$$= 0.36 \times t + 0.48 \times 0 + 0.48 \times 0 + 0.64 \times t = t$$

b) Based on the following IID $\mathcal{N}(0,1)$ random numbers, generate *two* payoffs of the basket European call option:

 $0.5268, 1.1492, 0.7640, -0.6327, 1.0802, 1.8522, 0.6952, 0.0661, \dots$

Answer: Letting Z_i denote the points above,

$$B_{1}^{(1)}(T) = \sqrt{T}Z_{1} = 0.5(0.5268) = 0.2634$$

$$B_{1}^{(2)}(T) = \sqrt{T}Z_{2} = 0.5(1.1492) = 0.5746$$

$$B_{1}^{(3)}(T) = 0.6B_{1}^{(1)}(T) + 0.8B_{1}^{(2)}(T) = 0.6177$$

$$B_{2}^{(1)}(T) = \sqrt{T}Z_{3} = 0.5(0.7640) = 0.3820$$

$$B_{2}^{(2)}(T) = \sqrt{T}Z_{4} = 0.5(-0.6327) = -0.3164$$

$$B_{2}^{(3)}(T) = 0.6B_{2}^{(1)}(T) + 0.8B_{2}^{(2)}(T) = -0.0239$$

$$S_{1}^{(1)}(T) = 100e^{-0.125T + 0.5B_{1}^{(1)}(T)} = 110.57$$

$$S_{1}^{(2)}(T) = 100e^{-0.08T + 0.4B_{1}^{(3)}(T)} = 117.32$$

$$S_{2}^{(1)}(T) = 100e^{-0.125T + 0.5B_{2}^{(1)}(T)} = 125.50$$

$$S_{2}^{(2)}(T) = 100e^{-0.08T + 0.4B_{2}^{(3)}(T)} = 97.09$$

$$payoff_{1} = max\{10.57, 25.50, 0\} = 25.50$$

$$payoff_{2} = max\{17.32, -2.91, 0\} = 17.32$$

c) Below is a set of the first four scrambled and digitally shifted 4-dimensional Sobol' points:

	$oldsymbol{x}_i$					
i	0.1	x_{i2}	x_{i3}	x_{i4}		
0	0.3470 0.9035 0.0579 0.6927	0.6293	0.2813	0.2909		
1	0.9035	0.0219	0.6519	0.8898		
2	0.0579	0.4613	0.0862	0.5609		
3	0.6927	0.8226	0.9725	0.1490		

Which point(s), if any, lie in the box, $[0,1) \times [0,1/2) \times [0,1/2) \times [0,1)$? Why is that to be expected? Which point(s), if any, lie in the box, $[0,1/2) \times [0,1/2) \times [0,1/2) \times [0,1/2)$. Why is that to be expected?

Answer: The point x_2 lies in the first box, which is 1/4 of the points lying inside a box of volume 1/4, as expected. The point x_2 also lies in the second box, which has volume 1/8, but it is impossible for it to contain half a point.

d) The inverse normal transformation is of these scrambled Sobol' points is

i	$\Phi^{-1}(x_{i1})$	$\Phi^{-1}(x_{i2})$	$\Phi^{-1}(x_{i3})$	$\Phi^{-1}(x_{i4})$
0	-0.3935	0.3300	-0.5789	-0.5508
1	1.3015	-2.0158	0.3905	1.2252
2	-1.5730	-0.0972	-1.3644	0.1533
3	0.5036	0.9253	1.9181	-1.0405

Compute one payoff of the basket European call option using these Sobol' points.

Answer:

$$\begin{split} B_1^{(1)}(T) &= \sqrt{T}\Phi^{-1}(x_{11}) = 0.5(-0.3935) = -0.1968 \\ B_1^{(2)}(T) &= \sqrt{T}\Phi^{-1}(x_{12}) = 0.5(0.3300) = 0.1650 \\ B_1^{(3)}(T) &= 0.6B_1^{(1)}(T) + 0.8B_1^{(2)}(T) = 0.0140 \\ S_1^{(1)}(T) &= 100\mathrm{e}^{-0.125T + 0.5B_1^{(1)}(T)} = 87.84 \\ S_1^{(2)}(T) &= 100\mathrm{e}^{-0.08T + 0.4B_1^{(3)}(T)} = 98.57 \\ \mathrm{payoff_1} &= \mathrm{max}\{-13.16, -1.43, 0\} = 0 \end{split}$$