MATH 565 Monte Carlo Methods in Finance

Fred J. Hickernell

In-Class Part of Final Exam

Wednesday, December 5, 2018

Instructions:

- i. This part of the final exam has FOUR questions with a maximum score of 64 points. Attempt them all. Added to the 36 point maximum on the take-home part this gives a total maximum for the final exam of 100 points.
- ii. The time allowed is 120 minutes.
- iii. This test is closed book, but you may use 4 double-sided letter-size sheets of notes.
- iv. (Programmable) calculators are allowed, but they must not have stored text.
- v. Show all your work to justify your answers. Answers without adequate justification will not receive credit.
- vi. Off-site students may contact the instructor at 630-696-8124.

1. (12 points)

McDarren's Restaurant observes that B, the number of burgers in each order, follows the probability mass function

A $\mathcal{U}[0,1]$ random number generator produces the following U_i :

$$0.8638$$
, 0.2849 , 0.0733 , 0.7632 , 0.4527 .

What would be the corresponding values of B_i that fit this distribution?

Answer: The CDF of B is

Therefore, given any U_i , the inverse CDF gives us a B_i corresponding to the smallest b with $Pr(B_i \leq b) \geq U_i$. So,

2. (12 points)

Consider the two-dimensional integral

$$\mu = \int_0^1 \int_0^t g(s,t) \, \mathrm{d}s \, \mathrm{d}t.$$

Given $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \mathcal{U}[0,1]^2$, how would you approximate μ by a Monte Carlo method? (There may be more than one correct answer.)

Answer: There are a couple of ways. One is to do a variable transformation. Let s = tu and then ds = tdu, $\mathbf{x} = (t, u)$, and

$$\mu = \int_0^1 \int_0^t g(s,t) \, \mathrm{d}s \, \mathrm{d}t = \int_0^1 \int_0^1 t g(tu,t) \, \mathrm{d}u \, \mathrm{d}t \approx \frac{1}{n} \sum_{i=1}^n X_{i1} g(X_{i1} X_{i2}, X_{i1}).$$

Another way would be using the characteristic function, 1. and letting $\mathbf{x} = (s, t)$:

$$\mu = \int_0^1 \int_0^t g(s,t) \, \mathrm{d}s \, \mathrm{d}t = \int_0^1 \int_0^1 \mathbb{1}_{[0,t]}(s) g(s,t) \, \mathrm{d}s \, \mathrm{d}t \approx \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{[0,X_{i2}]}(X_{i1}) g(X_{i1}, X_{i2}).$$

3. (20 points)

Consider a stock monitored monthly for three months that has a \$20 initial price, zero interest rate, and a 40% year^{-1/2} volatility. Consider the IID $\mathcal{N}(0,1)$ random numbers:

$$0.0843, -0.1252, -1.2404, 0.7709, -1.8909, 1.1483$$

a) Use these random numbers to construct two stock paths and estimate the lookback call option price. This option expires in three months.

Answer:

b) Estimate the lookback call option price using the above random numbers and *antithetic* variates.

Answer:

4. (20 points)

Consider the following two (quasi-)Monte Carlo estimators of $\mu = \mathbb{E}[f(X)]$, where $X \sim \mathcal{U}[0,1]^d$:

$$\begin{split} \hat{\mu}_{\text{IID}} &= \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{X}_i), \quad \boldsymbol{X}_i \overset{\text{IID}}{\sim} \mathcal{U}[0,1]^d, \\ \hat{\mu}_{\text{lat}} &= \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1}), \quad \{\boldsymbol{Z}_i\}_{i=0}^{n-1} \text{ is an unshifted integration lattice, } \boldsymbol{\Delta} \sim \mathcal{U}[0,1]^d. \end{split}$$

a) Determine whether each of these estimators is biased or unbiased.

Answer: Both are unbiased:

$$\mathbb{E}[\hat{\mu}_{IID}] = \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E}[f(\boldsymbol{X}_i)] = \frac{1}{n} \sum_{i=0}^{n-1} \mu = \mu,$$

$$\mathbb{E}[\hat{\mu}_{lat}] = \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E}[f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1})] = \frac{1}{n} \sum_{i=0}^{n-1} \mu = \mu, \text{ since } \boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1} \sim \mathcal{U}[0, 1]^d.$$

b) What is $var(\hat{\mu}_{IID})$ in terms of $var(f(\boldsymbol{X}))$?

Answer:

$$\operatorname{var}(\hat{\mu}_{IID}) = \frac{1}{n^2} \sum_{i=0}^{n-1} \operatorname{var}(f(\boldsymbol{X}_i)) = \frac{1}{n^2} \sum_{i=0}^{n-1} \operatorname{var}(f(\boldsymbol{X})) = \frac{\operatorname{var}(f(\boldsymbol{X}))}{n}$$

c) Is $var(\hat{\mu}_{IID}) = var(\hat{\mu}_{lat})$? Why or why not?

Answer: They are not the same

$$\operatorname{var}(\hat{\mu}_{lat}) = \frac{1}{n^2} \operatorname{var} \left(\sum_{i=0}^{n-1} f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1}) \right) = \frac{1}{n^2} \mathbb{E} \left(\sum_{i=0}^{n-1} [f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1}) - \mu] \right)^2$$

$$= \frac{1}{n^2} \mathbb{E} \left(\sum_{i=0}^{n-1} [f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1}) - \mu] \sum_{j=0}^{n-1} [f(\boldsymbol{Z}_j + \boldsymbol{\Delta} \bmod \boldsymbol{1}) - \mu] \right)$$

$$= \frac{1}{n^2} \sum_{i,j=0}^{n-1} \mathbb{E} \left([f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1}) - \mu] [f(\boldsymbol{Z}_j + \boldsymbol{\Delta} \bmod \boldsymbol{1}) - \mu] \right)$$

$$= \frac{1}{n^2} \sum_{i=0}^{n-1} \operatorname{var} \left(f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1}) \right)$$

$$+ \frac{2}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} \operatorname{cov} \left(f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1}), f(\boldsymbol{Z}_j + \boldsymbol{\Delta} \bmod \boldsymbol{1}) \right)$$

$$= \frac{\operatorname{var}(f(\boldsymbol{X}))}{n} + \frac{2}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} \operatorname{cov} \left(f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1}), f(\boldsymbol{Z}_j + \boldsymbol{\Delta} \bmod \boldsymbol{1}) \right)$$

Since $\operatorname{cov}(f(\boldsymbol{Z}_i + \boldsymbol{\Delta} \bmod \boldsymbol{1}), f(\boldsymbol{Z}_j + \boldsymbol{\Delta} \bmod \boldsymbol{1}))$ is not zero in general, so $\operatorname{var}(\hat{\mu}_{IID}) \neq \operatorname{var}(\hat{\mu}_{lat})$.