MATH 565 Monte Carlo Methods in Finance

Fred J. Hickernell Take-Home Part of Final Exam

Fall 2008

Due 5 pm, Wednesday, December 10

Instructions:

- i. This take-home part of the final exam consists of THREE questions for a total possible of 50 marks. Answer all of them.
- ii. You may consult any book, web page, software repository or other inanimate object. You may use the m-files on Blackboard. You may not consult any other person face-to-face, by telephone, by email, or by any other means.
- iii. Show all your work to justify your answers. Submit hard copies of your derivations, programs, output, and explanations. Answers without adequate justification will not receive credit.

1. (15 marks)

Consider the problem of estimating $\mu = E[Y]$, where $Y = e^{X/2}$, and X is a standard normal random variable.

- a) Construct a simple Monte Carlo estimate with a confidence interval for μ using n=1000 samples. Based on this simulation, how large must n be to obtain a confidence interval of half-width less than 0.001?
- b) Construct a stratified sample estimate for μ using 50 strata with 20 samples per stratum, for a total of 1000 samples. Construct a confidence interval for μ . Is this confidence interval smaller or larger than the one for simple Monte Carlo?

Answer: Note that $E[Y] = E[e^{X/2}] = e^{1/8}$. Running the program TakeHomeExamFall2008.m gives the following output:

Problem 1

The true expectation is 1.1331

The simple Monte Carlo estimate of the expectation using n = 1000 samples is 1.1175 with a confidence interval of plus/minus 0.038848 To obtain a confidence interval of plus/minus 0.001 requires n = 1509157 samples

The stratified sampling estimate of the expectation using n = 1000 samples is 1.1321 with a confidence interval of plus/minus 0.0044992

The confidence interval for stratified sampling is much smaller.

2. (20 marks)

The time to get from your class on IIT's Main Campus to a job interview in downtown Chicago is X + Y, where X is the time in minutes to wait for a taxi and Y is the time in minutes for

the taxi ride downtown. Suppose that X has a zero-inflated exponential distribution, i.e., the cumulative probability distribution is:

$$F_X(x) = \begin{cases} 0, & -\infty < x < 0, \\ 0.4, & x = 0, \\ 1 - 0.6e^{-x/5}, & 0 < x < \infty. \end{cases}$$

Suppose that Y is a normal random variable with mean 15 minutes and variance 25 minutes squared.

a) Compute the true mean time it takes to get to your interview, $\mu = E(X + Y)$.

Answer:

$$\mu = E(X+Y) = E(X) + E(Y) = \left[0 \times 0.4 + \int_0^\infty x \frac{\mathrm{d}}{\mathrm{d}x} \left(1 - 0.6e^{-x/5}\right) \,\mathrm{d}x\right] + 15$$
$$= 15 + 0.6 \int_0^\infty x \frac{1}{5} e^{-x/5} \,\mathrm{d}x = 15 + 0.6 \times 5 = 18$$

- b) Perform a simple Monte Carlo simulation to estimate μ using 1000 samples. Compute $\hat{\mu}$ and a confidence interval for μ .
- c) Estimate μ using 20 random scramblings of Sobol' points with 50 samples each. Compute $\hat{\mu}$ and a confidence interval for μ . Hint: To learn how to use the Sobol' sequence generator in MATLAB's Statistics Toolbox, look at the online help or the samplepath.m program on Blackboard.
- d) Using simple Monte Carlo, estimate the probability that you will get to your interview in less than thirty minutes.

Answer: Running the program TakeHomeExamFall2008.m gives the following output:

Problem 2

The simple Monte Carlo estimate of the expected travel time using n = 1000 samples is 17.6668 with a confidence interval of plus/minus 0.4145 The probability of arriving within 30 minutes is 0.951

The Sobol' estimate of the expected travel time
using n = 1000 samples is 18.053
with a confidence interval of plus/minus 0.090468
The probability of arriving within 30 minutes is 0.955

3. (15 marks)

Consider a Bermudan or American style put option that has a life of T=1 year, and can be exercised weekly for 52 weeks. Assume the discrete time geometric Brownian motion model for the stock price with S(0) = 100, r = 3%, $\sigma = 70\%$, and a strike price for the option of K=100. Compute the option price with an error of less than one penny on the dollar using a suitable control variate. Is the price less than or greater than a Bermudan/American style put

option that can only be exercised every six months? *Hint: You may want to use the MATLAB programs on Blackboard.*

Running the program OptionPrice.m with the European option as a control variate gives the following output:

Using 10000 asset price samples based on a discrete geometric Brownian motion model of the asset with sampling method: independent and identically distributed For an initial asset price of \$100.00 a strike price of \$100.00 1.00 years to maturity an interest rate of 3.00% a volatility of 70.00%: For American put options monitored 52 times Without control variates: the put price is \$25.5621 plus/minus 0.4592 With control variates eurogbm the put price is \$25.7855 plus/minus 0.2244 Compared to the GBM European call price of \$28.4632 and the GBM European put price of \$25.5078 This computation took 0.39919 seconds Using 10000 asset price samples based on a discrete geometric Brownian motion model of the asset with sampling method: independent and identically distributed For an initial asset price of \$100.00 a strike price of \$100.00 1.00 years to maturity an interest rate of 3.00% a volatility of 70.00%: For American put options monitored 6 times Without control variates: the put price is \$25.8194 plus/minus 0.4874 With control variates eurogbm the put price is \$25.8630 plus/minus 0.1825 Compared to the GBM European call price of \$28.4632 and the GBM European put price of \$25.5078 This computation took 0.13887 seconds

The European option is a good control variate. The option monitored less often should be less expensive, but the price difference is not much and is indistinguishable at this level of accuracy.