MATH 565 Monte Carlo Methods in Finance

Fred J. Hickernell

Take-Home Part of Final Exam Due 10:30 AM, Wednesday, December 6, 2017

Instructions:

- i. This test has FOUR questions for a total of 36 points possible. You should attempt them all.
- ii. You may consult any book, web page, software repository, notes, old tests, or other inanimate object. You may use the m-files on the Git repositories for GAIL and the class. You may not consult any other person face-to-face, by telephone, by email, Facebook, Twitter, LinkedIn or by any other means. Sign here to acknowledge that you followed this instruction and return this page with your answers:

 Signature
 Date

- iii. Show all your work to justify your answers. Submit hard copies of this signed cover page and your derivations, programs, output, and explanations to me before the in-class final exam. Answers without adequate justification will not receive credit. Calculations performed in MATLAB should be submitted as published m-files.
- 1. (4 points)

Let $\hat{\mu}$ be any estimator for the quantity $\mu = \mathbb{E}(Y)$.

a) How does the the root mean squared error of the estimator depend on its bias and on its variance? Derive your answer.

Answer:

$$RMSE(\hat{\mu}) = \sqrt{\mathbb{E}[(\mu - \hat{\mu})^2]}$$

$$= \sqrt{\mathbb{E}[\{(\mu - \mathbb{E}(\hat{\mu})) + (\mathbb{E}(\hat{\mu}) - \hat{\mu}_n)\}^2]}$$

$$= \sqrt{\mathbb{E}[(\mu - \mathbb{E}(\hat{\mu}))^2] + 2\mathbb{E}[(\mu - \mathbb{E}(\hat{\mu}))(\mathbb{E}(\hat{\mu}) - \hat{\mu})] + \mathbb{E}[(\mathbb{E}(\hat{\mu}) - \hat{\mu})^2]}$$

$$= \sqrt{(\mu - \mathbb{E}(\hat{\mu}))^2 + 2 \times 0 + \text{var}(\hat{\mu})}$$

$$= \sqrt{[\text{bias}(\hat{\mu})]^2 + \text{var}(\hat{\mu})}$$

b) Give an example of an estimator that is unbiased. What is its variance?

Answer:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Y_i, \quad Y_i \stackrel{\text{IID}}{\sim} Y$$

$$\mathbb{E}(\hat{\mu}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(Y_i) = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu$$

$$\operatorname{var}(\hat{\mu}) = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{var}(Y_i) = \frac{\operatorname{var}(Y)}{n}$$

c) Give an example of a zero variance estimator. What is its bias?

Answer:

$$\hat{\mu} = 0$$
, $\mathbb{E}(\hat{\mu}) = 0$, $\operatorname{bias}(\hat{\mu}) = \mu$, $\operatorname{var}(\hat{\mu}) = 0$

2. (12 points)

Suppose that the generators of a two-dimensional (unshifted) digital net are

$$z_1 = (1/2, 1/2), \quad z_2 = (1/4, 3/4), \quad z_4 = (7/8, 7/8)$$

a) Compute the points z_0, \ldots, z_7 , and explain how it is done.

Answer: Let \oplus denote bitwise addition

$$\begin{array}{c|cccc} i & z_i \\ \hline 0 = 000_2 & 0 \times z_1 \oplus 0 \times z_2 \oplus 0 \times z_4 = (0,0) \\ 1 = 001_2 & 1 \times z_1 \oplus 0 \times z_2 \oplus 0 \times z_4 = z_1 = (1/2,1/2) = (20.100,20.100) \\ 2 = 010_2 & 0 \times z_1 \oplus 1 \times z_2 \oplus 0 \times z_4 = z_2 = (1/4,3/4) = (20.010,20.110) \\ 3 = 011_2 & 1 \times z_1 \oplus 1 \times z_2 \oplus 0 \times z_4 = (20.100,20.100) \oplus (20.010,20.110) \\ & = (20.110,2.0.010) = (3/4,1/4) \\ 4 = 100_2 & 0 \times z_1 \oplus 0 \times z_2 \oplus 1 \times z_4 = z_4 = (7/8,7/8) = (20.111,20.111) \\ 5 = 101_2 & 1 \times z_1 \oplus 0 \times z_2 \oplus 1 \times z_4 = (20.100,20.100) \oplus (20.111,20.111) \\ & = (20.011,2.0.011) = (3/8,3/8) \\ 6 = 110_2 & 0 \times z_1 \oplus 1 \times z_2 \oplus 1 \times z_4 = (20.010,20.110) \oplus (20.111,20.111) \\ & = (20.101,2.0.001) = (5/8,1/8) \\ 7 = 111_2 & 1 \times z_1 \oplus 1 \times z_2 \oplus 1 \times z_4 = (20.100,20.100) \oplus (20.010,20.110) \oplus (20.111,20.111) \\ & = (20.001,2.0.101) = (1/8,5/8) \end{array}$$

b) The set $\{z_0, \ldots, z_7\}$ is a group, which means that under digitwise addition, \oplus , any two points in the set added together equals one of the points in this set. Demonstrate that this is true by filling out the following 8×8 addition table:

For each row i and column j in the table enter the corresponding element $z_i \oplus z_j$. One answer has been entered for you. Fill in the other 63. Explain how you obtained your answer.

Answer: Referring to the binary digit representations in part a) and performing digitwise addition, we find that $z_i \oplus z_j = z_{i \oplus j}$. Also, note that $i \oplus j = j \oplus i$. So,

\oplus	$0 = 000_2$	$1 = 001_2$	$2 = 010_2$	$3 = 011_2$	$4 = 100_2$	$5 = 101_2$	$6 = 110_2$	$7 = 111_2$
$0 = 000_2$	$000_2 = 0$	$001_2 = 1$	$010_2 = 2$	$011_2 = 3$	$100_2 = 4$	$101_2 = 5$	$110_2 = 6$	$111_2 = 7$
$1 = 001_2$	1	$000_2 = 0$	$011_2 = 3$	$010_2 = 2$	$101_2 = 5$	$100_2 = 4$	$111_2 = 7$	$110_2 = 6$
$2 = 010_2$	2	3	$000_2 = 0$	$001_2 = 1$	$110_2 = 6$	$111_2 = 7$	$100_2 = 4$	$101_2 = 5$
$3 = 011_2$	3	2	1	$000_2 = 0$	$111_2 = 7$	$110_2 = 6$	$101_2 = 5$	$100_2 = 4$
$4 = 100_2$	4	5	6	7	$000_2 = 0$	$001_2 = 1$	$010_2 = 2$	$011_2 = 3$
5	5		7	6	1	$000_2 = 0$	$011_2 = 3$	$010_2 = 2$
6	6	7	4	5	2	3	$000_1 = 0$	$001_2 = 1$
7	7	6	5	4	3	2	1	$000_2 = 0$
	'							

\oplus	$ z_0 $	\boldsymbol{z}_1	$oldsymbol{z}_2$	\boldsymbol{z}_3	$oldsymbol{z}_4$	$oldsymbol{z}_5$	\boldsymbol{z}_6	$oldsymbol{z}_7$
\boldsymbol{z}_0	z_0	\boldsymbol{z}_1	$oldsymbol{z}_2$	\boldsymbol{z}_3	$oldsymbol{z}_4$	$oldsymbol{z}_5$	\boldsymbol{z}_6	z_7
\boldsymbol{z}_1	$ z_1 $	\boldsymbol{z}_0	\boldsymbol{z}_3	\boldsymbol{z}_2	$oldsymbol{z}_5$	$oldsymbol{z}_4$	$oldsymbol{z}_7$	\boldsymbol{z}_6
$oldsymbol{z}_2$	z_2	\boldsymbol{z}_3	\boldsymbol{z}_0	\boldsymbol{z}_1	\boldsymbol{z}_6	$oldsymbol{z}_7$	$oldsymbol{z}_4$	$oldsymbol{z}_5$
\boldsymbol{z}_3	z_3	$oldsymbol{z}_2$	$oldsymbol{z}_1$	\boldsymbol{z}_0	z_7	$oldsymbol{z}_6$	$oldsymbol{z}_5$	$oldsymbol{z}_4$
$oldsymbol{z}_4$	z_4	$oldsymbol{z}_5$	$oldsymbol{z}_6$	\boldsymbol{z}_7	\boldsymbol{z}_0	$oldsymbol{z}_1$	$oldsymbol{z}_2$	\boldsymbol{z}_3
$oldsymbol{z}_5$	z_5	$oldsymbol{z}_4$	z_7	\boldsymbol{z}_6	\boldsymbol{z}_1	\boldsymbol{z}_0	\boldsymbol{z}_3	$oldsymbol{z}_2$
\boldsymbol{z}_6	z_6	$oldsymbol{z}_7$	$oldsymbol{z}_4$	$oldsymbol{z}_5$	$oldsymbol{z}_2$	\boldsymbol{z}_3	\boldsymbol{z}_0	\boldsymbol{z}_1
\boldsymbol{z}_7	$ z_7 $	\boldsymbol{z}_6	$oldsymbol{z}_5$	$oldsymbol{z}_4$	\boldsymbol{z}_3	$oldsymbol{z}_2$	\boldsymbol{z}_1	\boldsymbol{z}_0

c) Does the wavenumber k = (1, 2) belong to the dual net? Why or why not?

Answer: $(1,2) = (01_2, 10_2)$ does not lie in the dual net because using the notation in the notes

$$\langle \boldsymbol{k}, \boldsymbol{z}_1 \rangle = \langle (01_2, 10_2), (20.10, 20.10) \rangle = (1 \times 1 + 0 \times 0) + (0 \times 1 + 1 \times 0) \mod 2 = 1 \neq 0$$

3. (8 points)

A stock is governed by a geometric Brownian motion with initial price of \$50, an interest rate of 1%, a volatility of 30%. You monitor the stock price each week for thirteen weeks (one quarter of a year) i.e., you compute $S(1/52), S(2/52), \ldots, S(1/4)$. Compute the price of an arithmetic mean call option with a strike price of \$50 with an absolute error of \$0.005.

4. (12 points)

Consider a stock under the same assumptions as in the previous problem. What is the expected number of thirteen weekly stock prices that will be over \$55 to the nearest 0.02?

Answer: See the MATLAB script F17FinalProb3_4.m, which can be published.