MATH 565 Monte Carlo Methods in Finance

Fred J. Hickernell Make-Up Test

Fall 2009 Friday, October 9

Instructions:

- i. This test consists of FOUR questions. Answer all of them.
- ii. The time allowed for this test is 75 minutes
- iii. This test is closed book, but you may use 4 double-sided letter-size sheets of notes.
- iv. Calculators, even of the programmable variety, are allowed. Computers, but only using MATLAB or JMP, are also allowed. No internet access.
- v. Show all your work to justify your answers. Answers without adequate justification will not receive credit.

1. (25 marks)

Let X_1, \ldots, X_n be independent and identically distributed random variables with mean μ and variance σ^2 . Define the weighted sample mean by

$$\bar{X} = w_1 X_1 + \dots + w_n X_n,$$

for deterministic real-valued weights, w_1, \ldots, w_n .

a) Derive the mean and variance of \bar{X} .

Answer:

$$E(\bar{X}) = E(w_1 X_1 + \dots + w_n X_n) = w_1 \mu + \dots + w_n \mu = \mu(w_1 + \dots + w_n),$$

$$var(\bar{X}) = var(w_1 X_1 + \dots + w_n X_n) = w_1^2 var(X_1) + \dots + w_n^2 var(X_n) = \sigma^2(w_1^2 + \dots + w_n^2).$$

b) Under what condition on the weights is \bar{X} an unbiased estimator of μ ?

Answer: The estimator \bar{X} is unbiased if $w_1 + \cdots + w_n = 1$.

c) What choice of weights makes $var(\bar{X})$ minimum? Is \bar{X} unbiased for this choice of weights?

Answer: If $w_1 = \cdots = w_n = 0$, then $var(\bar{X}) = 0$, the smallest value possible. In this case $\bar{X} = 0$, and so \bar{X} is biased (unless $\mu = 0$).

d) What choice of the weights gives an unbiased estimator with minimum variance?

Answer:

$$\operatorname{var}(\bar{X}) = \sigma^{2}(w_{1}^{2} + \dots + w_{n}^{2})$$

$$= \sigma^{2} \left\{ \left[(w_{1} - 1/n)^{2} + \dots + (w_{n} - 1/n)^{2} \right] + 2(w_{1} + \dots + w_{n})/n - (1 + \dots + 1)/n^{2} \right\}$$

$$= \sigma^{2} \left\{ \left[(w_{1} - 1/n)^{2} + \dots + (w_{n} - 1/n)^{2} \right] + 2/n - 1/n \right\}$$

$$= \sigma^{2} \left\{ \left[(w_{1} - 1/n)^{2} + \dots + (w_{n} - 1/n)^{2} \right] + 1/n \right\} \ge \sigma^{2}/n$$

Note that this lower bound can be reached if $w_1 = \cdots = w_n = 1/n$, i.e., equal weights give minimum variance.

1

2. (20 marks)

Consider linear congruential generator

$$x_0 = m_0/7$$
, $x_i = ax_{i-1} \mod 1$, $i = 1, 2, \dots$

where the seed, m_0 , is some integer between 1 and 6, and a is also some integer between 1 and 6. For what values of a will this random number generator have the largest period possible. What is this maximum period?

Answer: The maximum period possible is 6 = 7 - 1. We can check the possible values of a with any seed (say $m_0 = 1$) to see what the period is:

a	x_0	x_1	x_2	x_3	x_4	x_5	x_6	• • •
1	1/7	1/7	1/7	1/7	1/7	1/7	1/7	• • •
2	1/7	2/7	4/7	1/7	2/7	4/7	1/7	• • •
3	1/7	3/7	2/7	6/7	4/7	5/7	1/7	• • •
4	1/7	4/7	2/7	1/7	4/7	2/7	1/7	• • •
5	1/7	5/7	4/7	6/7	2/7	3/7	1/7	• • •
6	1/7	6/7	1/7	6/7	1/7	6/7	1/7	

There will be a full period for a = 3, 5.

3. (25 marks)

Consider a random variable X with the geometric distribution with mean 2:

$$Prob(X = x) = 2^{-x}, \quad x = 1, 2, \dots$$

You may think of X as denoting the number of tries that it takes for an email message to be passed successfully to the recipient if the chance of a success on each try is 1/2, independent of every other try. Use the linear congruential generator in the previous problem with a=3 and $m_0=1$ to produce five pseudorandom numbers with this distribution.

Answer: First we find the cumulative distribution function:

$$F(x) = \text{Prob}(X \le x) = \sum_{y=1}^{x} \text{Prob}(X = y) = \sum_{y=1}^{x} 2^{-y} = 1 - 2^{-x}, \quad x = 1, 2, \dots$$

Then we use the inverse cumulative distribution function method. Let x = F(t), and $t = F^{-1}(x)$. Then

$$F^{-1}(x) = \begin{cases} 1, & 0 \le x \le 1/2, \\ 2, & 0.5 < x \le 0.75, \\ \cdots \\ t, & 1 - 2^{-t+1} < x \le 1 - 2^{-t}, \\ \cdots \end{cases}$$

Then, we compute $T_i = F^{-1}(X_i)$ to get

4. (30 marks)

Let X_1, X_2 are i.i.d. uniform random variables on the interval [0, 1]. Use Monte Carlo simulation to estimate hat the probability to the nearest 1% that $\min(X_1, X_2) \le 0.5 \le \max(X_1, X_2)$.

Answer: The code for this program plus the output is given below. The value of n may be found by choosing a trial value, n_0 , obtaining an absolute error estimate ε_0 , and then estimating $n = 1.2n_0(\varepsilon_0/0.01)^2$. The value n = 12000 is adequate. The true value is 50%.

```
% Probability of bracketing
n=1e3 %number of samples
tol=0.01; %error tolerance
%compute ordered pairs of random variables
x=rand(n,2); %generate ordered pairs of uniform numbers
bracket=(\min(x,[],2) <= 0.5) \& (\max(x,[],2) >= 0.5);
prob=mean(bracket) %MC estimate of probability of bracketing
ciwidth=1.96*sqrt(prob*(1-prob))/sqrt(n) %confidence interval half-width
nest=1.2*n*(ciwidth/tol)^2 %estimated n to meet tolerance
n =
        1000
prob =
    0.4990
ciwidth =
    0.0310
nest =
   1.1525e+04
n =
       12000
prob =
    0.5061
ciwidth =
    0.0089
nest =
   1.1523e+04
```