MATH 565 Monte Carlo Methods in Finance

Fred J. Hickernell

Test 1

Thursday, September 27, 2018

Instructions:

- i. This test has FOUR questions. Attempt them all. The maximum number of points is 100.
- ii. The time allowed is 75 minutes.
- iii. Keep at least four significant digits in your intermediate calculations and final answers.
- iv. This test is closed book, but you may use 4 double-sided letter-size sheets of notes.
- v. (Programmable) calculators are allowed, but they must not have stored text. No phones are allowed.
- vi. Show all your work to justify your answers. Answers without adequate justification will not receive credit
- 1. (15 points)

Consider the following estimators for $\mu = \mathbb{E}(Y)$, where the random variable Y has variance σ^2 :

$$Z_1 = \frac{Y_1 + Y_2}{10}$$
, $Z_2 = 10Y_1 - 9Y_2$, $Z_3 = 47$, where $Y_1, Y_2 \stackrel{\text{IID}}{\sim} Y$.

a) What are the biases of Z_1 , Z_2 , and Z_3 ? Which estimator(s) is unbiased?

Answer:

bias
$$(Z_1) = \mu - \mathbb{E}(Z_1) = \mu - \frac{\mathbb{E}(Y_1) + \mathbb{E}(Y_2)}{10} = \mu - \frac{\mu + \mu}{10} = \frac{4\mu}{5},$$

bias $(Z_2) = \mu - \mathbb{E}(Z_2) = \mu - [10\,\mathbb{E}(Y_1) - 9\,\mathbb{E}(Y_2)] = \mu - [10\mu - 9\mu] = 0$ (unbiased),
bias $(Z_3) = \mu - \mathbb{E}(Z_3) = \mu - 47.$

b) What are the variances of Z_1 , Z_2 , and Z_3 ? Which estimator has the smallest variance?

Answer:

$$var(Z_1) = var\left(\frac{Y_1 + Y_2}{10}\right) = \frac{var(Y_1) + var(Y_2)}{100} = \frac{\sigma^2}{50},$$

$$var(Z_2) = var(10Y_1 - 9Y_2) = 100\sigma^2 + 81\sigma^2 = 181\sigma^2,$$

$$var(Z_3) = var(47) = 0 \qquad (smallest \ variance).$$

2. (30 points)

Suppose that you want to estimate $\mu = \mathbb{E}(Y)$ and that you can generate IID instances of Y.

a) Suppose that you an observe a sample mean of 7.532 and an (unbiased) sample variance of 34.73 from 1000 IID instances of Y. Construct an approximate 99% confidence interval for μ .

Answer: Using the Central Limit Theorem (CLT) and inflating the sample standard deviation by 1.2 give an approximate confidence interval of

$$\hat{\mu}_n \pm \frac{2.58 \times 1.2 \times \hat{\sigma}_n}{\sqrt{n}} = 7.532 \pm \frac{2.58 \times 1.2 \times \sqrt{34.73}}{\sqrt{1000}} = 7.532 \pm 0.5770 = [6.955, 8.109]$$

b) Suppose that, *independently* of part a), you observe a sample mean of 7.568 from 5000 IID instances of Y. Find the mean of this second sample *combined with* the first sample in part a).

Answer: The total number of data is now 1000 + 5000 = 6000. The sample mean of the both samples combined is

$$\hat{\mu}_{6000} = \frac{1}{6000} \sum_{i=1}^{6000} Y_i = \frac{1}{6000} \left[\sum_{i=1}^{1000} Y_i + \sum_{i=1000+1}^{6000} Y_i \right] = \frac{1}{6000} \left[1000 \times 7.532 + 5000 \times 7.568 \right]$$

$$= 7.562$$

c) What would you expect the half width of your approximate confidence interval based on the *combined samples* in part a) and b) to be?

Answer: Now n = 1000 + 5000 = 6000, which is six times the size of the original sample. Thus, the half-width of the approximate confidence interval will be $1/\sqrt{6}$ that of original, or $0.5770/\sqrt{6} = 0.2356$.

3. (30 points)

Consider the random variable X with the cumulative distribution function

$$F(x) = \begin{cases} 0, & -\infty < x < 0, \\ 1 - \frac{\exp(-x)}{2}, & 0 \le x < \infty. \end{cases}$$

a) What is $\mathbb{P}(X < 0)$? $\mathbb{P}(X = 0)$? $\mathbb{P}(X > 0)$?

Answer:

$$\mathbb{P}(X < 0) = \lim_{x \uparrow 0} \mathbb{P}(X \le x) = \lim_{x \uparrow 0} F(x) = 0,$$

$$\mathbb{P}(X = 0) = \mathbb{P}(X \le 0) - \mathbb{P}(X < 0) = F(0) - 0 = \frac{1}{2},$$

$$\mathbb{P}(X > 0) = 1 - \mathbb{P}(X \le 0) = 1 - F(0) = \frac{1}{2}.$$

b) Suppose that $Z \sim \mathcal{U}[0,1]$. How can you obtain an instance of X from an instance of Z?

Answer: We can use the inverse CDF transformation. Note that X has sample space $[0,\infty)$. Since $\mathbb{P}(X=0)=1/2$, then $0 \leq Z \leq 1/2$ corresponds to X=0. For 1/2 < Z < 1, we solve the equation

$$Z = F(X) = 1 - \frac{\exp(-X)}{2} \iff \exp(-X) = 2(1 - Z) \iff X = -\log(2(1 - Z)).$$

To summarize

$$X = F^{-1}(Z) = \begin{cases} 0, & 0 \le Z \le \frac{1}{2}, \\ -\log(2(1-Z)), & \frac{1}{2} < Z < 1. \end{cases}$$

c) What values of X are produced by your recipe in part b) for $Z_1 = 0.3281$ and $Z_2 = 0.6043$?

Answer:

$$X_1 = 0$$
 since $Z_1 = 0.3281 \le 1/2$,
 $X_2 = -\log(2(1 - Z_2)) = -\log(2(1 - 0.6043)) = 0.2340$ since $Z_2 = 0.6043 > 1/2$,

4. (25 points)

Consider the following two-dimensional integral:

$$\mu = \int_{\mathbb{R}^2} \cos(x_1 + x_2) \exp(-2(x_1^2 + x_2^2)) dx.$$

The following are four IID $\mathcal{N}(0,1)$ random numbers:

$$-0.5379$$
 1.2537 -1.7361 0.0204

Use these to form, $\hat{\mu}_n$, a Monte Carlo estimate of μ . Granted, n cannot be very large.

Answer: There are multiple ways to approach this problem. One way is to recognize that the integrand looks like a function multipled by a Gaussian PDF with variance 1/4:

$$\mu = \int_{\mathbb{R}^2} \underbrace{\frac{\pi}{2} \cos(x_1 + x_2)}_{f(\boldsymbol{x})} \underbrace{\frac{\exp\left(-(x_1^2 + x_2^2)/(2 \times \frac{1}{4})\right)}{\sqrt{(2\pi \times \frac{1}{4})^2}}}_{\varrho(\boldsymbol{x})} d\boldsymbol{x}.$$

Here the probability density function is constant, corresponding to the uniform density on the domain.

We must transform our $\mathcal{N}(0,1)$ random numbers to $\mathcal{N}(0,1/4)$ random numbers:

$$\begin{array}{c|ccccc} i & 1 & 2 & 3 & 4 \\ Z_i \sim \mathcal{N}(0,1) & -0.5379 & 1.2537 & -1.7361 & 0.0204 \\ X_i = Z_i/2 \sim \mathcal{N}(0,1/4) & -0.2690 & 0.6270 & -0.8680 & 0.0102 \end{array}$$

Next, we order the four X_i to make two vectors in \mathbb{R}^2 , i.e., n = 2. Our Monte Carlo estimate is then the average of the two function values.

$$\begin{array}{c|cccc} i & x_i & f(x_i) \\ \hline 1 & -0.2690 & -0.8680 & 0.6603 \\ 2 & 0.6270 & 0.0102 & 1.2625 \\ \hline \hat{\mu}_2 & & & 0.9614 \\ \hline \end{array}$$

If we order the four X_i a different way, then we get

$$\begin{array}{c|cccc} i & x_i & f(x_i) \\ \hline 1 & -0.2690 & 0.6270 & 1.4712 \\ 2 & -0.8680 & 0.0102 & 1.0275 \\ \hline \hat{\mu}_2 & & & 1.2493 \\ \hline \end{array}$$