MATH 565 Monte Carlo Methods in Finance

Fred J. Hickernell Test Tuesday, November 9

Instructions:

- i. This test consists of THREE questions. Answer all of them.
- ii. The time allowed for this test is 75 minutes
- iii. This test is closed book, but you may use 4 double-sided letter-size sheets of notes.
- iv. Calculators, even of the programmable variety, are allowed. Computers, but only using MATLAB or JMP, are also allowed. No internet access.
- v. Show all your work to justify your answers. Answers without adequate justification will not receive credit.

1. (30 marks)

Let $X_1, X_2, ...$ be independent and identically distributed random variables on \mathbb{R} with probability density f_X . Let $Y_1, Y_2, ...$ be independent and identically distributed random variables on \mathbb{R} with probability density f_Y . Let $g: \mathbb{R} \to \mathbb{R}$ be some function, and suppose that you wish to estimate

$$I = \int_{\mathbb{R}} g(x) \, dx.$$

a) Which one or more of the following are *unbiased estimators* of *I*:

$$\hat{I}_{1} = \frac{1}{n} \sum_{i=1}^{n} g(X_{i}), \qquad \hat{I}_{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{g(X_{i})}{f_{X}(X_{i})}, \qquad \hat{I}_{3} = \frac{1}{n} \sum_{i=1}^{n} g(X_{i}) f_{X}(X_{i}),$$

$$\hat{I}_{4} = \frac{1}{n} \sum_{i=1}^{n} g(Y_{i}), \qquad \hat{I}_{5} = \frac{1}{n} \sum_{i=1}^{n} \frac{g(Y_{i})}{f_{Y}(Y_{i})}, \qquad \hat{I}_{6} = \frac{1}{n} \sum_{i=1}^{n} g(Y_{i}) f_{Y}(Y_{i})?$$

Answer: Only I_2 and I_5 , because

$$E[\hat{I}_{1}] = \frac{1}{n} \sum_{i=1}^{n} E[g(X_{i})] = E[g(X)] = \int_{\mathbb{R}} g(x) f_{X}(x) dx \neq I$$

$$E[\hat{I}_{2}] = \frac{1}{n} \sum_{i=1}^{n} E\left[\frac{g(X_{i})}{f_{X}(X_{i})}\right] = E\left[\frac{g(X)}{f_{X}(X)}\right] = \int_{\mathbb{R}} \frac{g(x)}{f_{X}(x)} f_{X}(x) dx = I,$$

$$E[\hat{I}_{3}] = \frac{1}{n} \sum_{i=1}^{n} E[g(X_{i}) f_{X}(X_{i})] = \int_{\mathbb{R}} g(x) f_{X}(x) f_{X}(x) dx \neq I,$$

$$E[\hat{I}_{4}] = \frac{1}{n} \sum_{i=1}^{n} E[g(Y_{i})] = E[g(Y)] = \int_{\mathbb{R}} g(y) f_{Y}(y) dy \neq I,$$

$$E[\hat{I}_{5}] = \frac{1}{n} \sum_{i=1}^{n} E\left[\frac{g(Y_{i})}{f_{Y}(Y_{i})}\right] = E\left[\frac{g(Y)}{f_{Y}(Y)}\right] = \int_{\mathbb{R}} \frac{g(y)}{f_{Y}(y)} f_{Y}(y) dy = I,$$

$$E[\hat{I}_{6}] = \frac{1}{n} \sum_{i=1}^{n} E[g(Y_{i}) f_{Y}(Y_{i})] = E[g(Y) f_{Y}(Y)] = \int_{\mathbb{R}} g(y) f_{Y}(y) f_{Y}(y) dy \neq I.$$

b) Express the variance(s) of the *unbiased estimator(s)* from the previous part in terms of integrals involving g, f_X , and f_Y . If you have some knowledge of the values of these integrals, which estimator would you choose?

Answer:

$$\operatorname{var}(\hat{I}_{2}) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{g(X_{i})}{f_{X}(X_{i})}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}\left(\frac{g(X_{i})}{f_{X}(X_{i})}\right) = \frac{1}{n}\operatorname{var}\left(\frac{g(X)}{f_{X}(X)}\right)$$

$$= \frac{1}{n}\int_{\mathbb{R}}\left[\frac{g(x)}{f_{X}(x)} - I\right]^{2}f_{X}(x) \, dx = \frac{1}{n}\int_{\mathbb{R}}\left[\frac{g(x)}{f_{X}(x)} - \int_{\mathbb{R}}g(t) \, dt\right]^{2}f_{X}(x) \, dx,$$

$$\operatorname{var}(\hat{I}_{5}) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}\frac{g(Y_{i})}{f_{Y}(Y_{i})}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}\left(\frac{g(Y_{i})}{f_{Y}(Y_{i})}\right) = \frac{1}{n}\operatorname{var}\left(\frac{g(Y)}{f_{Y}(Y)}\right)$$

$$= \frac{1}{n}\int_{\mathbb{R}}\left[\frac{g(y)}{f_{Y}(y)} - I\right]^{2}f_{Y}(y) \, dy = \frac{1}{n}\int_{\mathbb{R}}\left[\frac{g(y)}{f_{Y}(y)} - \int_{\mathbb{R}}g(t) \, dt\right]^{2}f_{Y}(y) \, dy.$$

The better estimator would be the one with the smaller variance.

2. (35 marks)

Consider a model for the asset price over the course of one year, where r = 0, S(0) = 100, and the volatility, σ , depends on the asset price. Specifically,

$$S(t_j) = S(t_{j-1}) \exp\left(-\frac{\sigma^2(S(t_{j-1}))}{2d} + \sigma(S(t_{j-1}))\sqrt{\frac{1}{d}}X_j\right), \quad j = 1, \dots, d,$$

$$X_1, X_2, \dots, X_d \text{ i.i.d. } N(0, 1),$$

$$t_j = j/d, \quad j = 0, \dots, d,$$

$$\sigma(S) = 0.5 + 2E - 5(S - 100)^2.$$

Use i.i.d. sampling with $n = 10^5$ samples and d = 52 to approximate the price of a European call option with strike price \$100. Also estimate the error of your approximation.

Answer: The MATLAB program that solves this problem is

```
r=0; %interest rate
sig= @(S) 0.5 + 2e-5*(S-100).^2; %volatility function
d=52; %number of discretizations
S0=100; %initial asset price
K=100; %strike price
n=1e5; %number of samples
T=1; %time to expiry
Delta=T/d; %time step
Smat=[repmat(S0,n,1) zeros(n,d)]; %initialize stock paths
Xmat=randn(n,d); %get normal random numbers
for j=1:d
    sigj=sig(Smat(:,j)); %compute variance depending on asset price
    Smat(:,j+1)=Smat(:,j).*exp((r-sigj.^2/2)*Delta + sigj.*Xmat(:,j)*sqrt(Delta)); %next sigj.**
```

```
end
payoff=max(Smat(:,d+1)-K,0)*exp(-r*T); %payoff
call=mean(payoff); %approximate call price
err=1.96*std(payoff)/sqrt(n); %estimate of error
disp('The price of the call option with varying volatility')
disp([' is $' num2str(call) ' +/- ' num2str(err)])

The price of the call option with varying volatility
    is $17.3922 +/- 0.25137
```

3. (35 marks)

Consider the computation of a multivariate normal probability

$$p = \int_{[-1,1]^3} \frac{1}{\sqrt{(2\pi)^3 \det(\mathsf{C})}} \exp\left(-\frac{1}{2} \boldsymbol{x}^T \mathsf{C}^{-1} \boldsymbol{x}\right) \, \mathrm{d}\boldsymbol{x}, \quad \text{where } \mathsf{C} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 4 \end{pmatrix}.$$

Estimate the value of p by Monte Carlo using $n=10^2,\ldots,10^5$ samples of i) i.i.d. sampling, and ii) either antithetic variates or Latin hypercube sampling. (Hint: Try your program on the problem $\int_{[-1,1]^3} 1 \, \mathrm{d}\boldsymbol{x}$ as a check.)

Answer: The MATLAB program for this problem is

```
%% Problem 3 on Test 2
d=3:
C=[2 -1 0; -1 3 1; 0 1 4];
eig(C) %to check that it is positive definite
integrand=Q(x,C) \exp(-sum(x.*(C\x')',2)/2)/sqrt((2*pi)^3*det(C));
nvec=10.^(2:5)';
nn=size(nvec,1);
for i=1:nn
    n=nvec(i); %sample size
    disp(['For a sample size of n = ' int2str(n) ' the estimate of p'])
    nov2=n/2; %half the sample size
    xiid=2*rand(n,d)-1; %iid sampling
    yiid=integrand(xiid,C); %integrand values
    piid=8*mean(yiid); %value of the integral
              is 'num2str(piid) 'using iid sampling'])
    disp(['
    temp=rand(nov2,d);
    xanti=[2*temp-1; 1-2*temp]; %antithetic variate sampling
    yanti=integrand(xanti,C); %integrand values
    panti=8*mean(yanti); %value of the integral
              is ' num2str(panti) ' using antithetic variates'])
    xlhs=2*lhsdesign(n,d,'criterion','none')-1; %lhs sampling
    ylhs=integrand(xlhs,C); %integrand values
    plhs=8*mean(ylhs); %value of the integral
              is ' num2str(plhs) ' using Latin hypercube sampling'])
end
```

ans =

- 1.267949192431123
- 3.000000000000001
- 4.732050807568877
- For a sample size of n = 100 the estimate of p
 - is 0.094691 using iid sampling
 - is 0.09544 using antithetic variates
 - is 0.097473 using Latin hypercube sampling
- For a sample size of n = 1000 the estimate of p
 - is 0.096702 using iid sampling
 - is 0.096738 using antithetic variates
 - is 0.096672 using Latin hypercube sampling
- For a sample size of n = 10000 the estimate of p
 - is 0.096815 using iid sampling
 - is 0.096936 using antithetic variates
 - is 0.096858 using Latin hypercube sampling
- For a sample size of n = 100000 the estimate of p
 - is 0.09696 using iid sampling
 - is 0.096961 using antithetic variates
 - is 0.096879 using Latin hypercube sampling
- For a sample size of n = 1000000 the estimate of p
 - is 0.096831 using iid sampling
 - is 0.096867 using antithetic variates
 - is 0.09685 using Latin hypercube sampling