
MATH 565 Monte Carlo Methods in Finance
Fred J. Hickernell Test 2 Thursday, November 10, 2016

Instructions:

i. This test has FOUR questions, each worth 35 points. You my choose which problems that you wish to
attempt. All will be graded. The maximum possible score that you can earn is capped at 100 points,
which will be considered a perfect score.

ii. The time allowed is 75 minutes.

iii. This test is closed book, but you may use 4 double-sided letter-size sheets of notes.

iv. (Programmable) calculators are allowed, but they must not have stored text.

v. Show all your work to justify your answers. Answers without adequate justification will not receive
credit.

1. (35 points)
Consider the stochastic differential equation for the stock price that takes the form

d log(S(t)) = (−σ2/2)dt+ σdB(t), t ≥ 0, S(0) = 50,

where B is a Brownian motion. Here we assume that the interest rate is zero and remember
that log means the natural logarithm.

a) The geometric Brownian motion model for stock prices assumes that σ is a constant.
Suppose that σ = 0.4, and that you generate a Brownian motion path with values

time t 1/12 1/6 1/4

Brownian motion B(t) −0.1123 −0.4910 0.0626

What is S(1/6) under this model?

Answer: The solution to the stochastic differential equation under constant volatility is∫ t

0
d log(S(s)) =

∫ t

0

[
(−σ2/2)ds+ σdB(s)

]
,

log(S(t)/S(0)) = log(S(t))− log(S(0)) = (−σ2/2)t+ σB(t),

S(t) = S(0) exp
(
(−σ2/2)t+ σB(t)

)
.

So,
S(1/6) = 50 exp

(
(−0.42/2)(1/6) + 0.4(−0.4910)

)
= $40.54.

b) Now assume that the stochastic differential equation above still holds, but that the volatil-
ity has a skew, in particular,

σ(S) = 0.4 + 0.2

(
S

40
− 1

)
.

Use the Brownian motion above to approximate S(1/6) under this skew model.



Answer: Since σ is not constant, we cannot solve the stochastic differential equation ex-
actly. However, it may be solved approximately:∫ t+∆

t
d log(S(s)) =

∫ t+∆

t

[
(−σ(S)2/2)ds+ σ(S)dB(s)

]
,

log(S(t+ ∆))− log(S(t)) ≈ −σ(S(t))2/2)∆ + σ(S(t))[B(t+ ∆)−B(t)],

log(S(t+ ∆)/S(t)) ≈ −σ(S(t))2/2)∆ + σ(S(t))[B(t+ ∆)−B(t)],

S(t+ ∆) ≈ S(t) exp
(
(−σ(S(t))2/2)∆ + σ(S(t))[B(t+ ∆)−B(t)]

)
.

This means that

σ(S(0)) = 0.4 + 0.2

(
S(0)

40
− 1

)
= 0.45

S(1/12) ≈ S(0) exp
(
(−σ(S(0))2/2)∆ + σ(S(0))[B(1/12)−B(0)]

)
,

≈ 50 exp
(
(−0.452/2)(1/12) + 0.45[−0.1123− 0]

)
= $47.14,

σ(S(1/12)) = 0.4 + 0.2

(
S(1/12)

40
− 1

)
= 0.4317,

S(1/6) ≈ S(1/12) exp
(
(−σ(S(1/12))2/2)∆ + σ(S(1/12))[B(1/6)−B(1/12)]

)
,

≈ 46.35 exp
(
(−0.43172/2)(1/12) + 0.4317[−0.4910− (−0.1123)]

)
= $39.65.

2. (35 points)
Suppose that one generates IID random vectors, (Yi, Xi), i = 1, . . . , n for the purpose of
estimating µ = E(Y1). Here, µX = E(X1) is known. Given this information, you decide to
estimate µ by the control variate estimator µ̂CV,n, where

µ̂CV,n =
1

n

n∑
i=1

YCV,i, YCV,i = Yi + β̂(µX −Xi), i = 1, . . . , n.

You have computed the following using a rather large n:

σ̂Y Y = the sample variance of the Yi, σ̂Y Y = 4

σ̂XX = the sample variance of the Xi, σ̂XX = 2

σ̂Y X = the sample covariance of the Yi and Xi

β̂ = 1

a) Are X1 and Y1 likely identically distributed?

Answer: No. They seem to have different variances.

b) Are X1 and Y1 likely independent?

Answer: Since β̂ = σ̂Y X/σ̂XX for control variates, σ̂Y X = β̂σ̂XX = 2. Since this is
nonzero, X1 and Y1 are likely dependent.



c) If it takes n = 105 samples to estimate µ satisfactorily without control variates, about
how large should n be to estimate µ satisfactorily with control variates?

Answer: Let µZ,n = n−1
∑n

i=1 Zi where the Zi are IID. Whether we look at root mean
square error or the width of a confidence interval, both are proportional to std(Z)/

√
n.

Thus to meet a fixed error tolerance, we need n to be proportional to var(Z). Since

var(YCV,1) = var(Y1)[1− corr2(Y,X)],

it follows that we can meet a fixed error tolerance, using control variates with only 1 −
corr2(Y,X) times the original sample size, n = 105.

Note that

corr2(Y,X) =
cov2(Y,X)

var(X) var(Y )
≈

σ̂2
Y X

σ̂XX σ̂Y Y
=

22

2× 4
=

1

2
.

So, only about 5× 104 samples are needed to estimate µ using control variates.

3. (35 points)
Consider two functions defined on the domain [−1, 1]:

f1(x) = 3x2, f2(x) = 1− 4x3.

a) Assuming X ∼ U [−1, 1], compute by hand µj = E[fj(X)] for j = 1, 2.

Answer:

µ1 = E[f1(X)] =

∫ 1

−1
f1(x)

1

2
dx =

1

2

∫ 1

−1
3x2 dx =

1

2
x3

∣∣∣∣1
−1

= 1,

µ2 = E[f2(X)] =

∫ 1

−1
f2(x)

1

2
dx =

1

2

∫ 1

−1
1− 4x3 dx =

1

2
(x− x4)

∣∣∣∣1
−1

= 1.

b) If X1 = −0.4, what are the estimates of µj , j = 1, 2 based on one sample using antithetic
variates?

Answer: For X1 = −0.4, the antithetic value is X̂1 = −X1 = 0.4. Then

f1(X1) = f1(−0.4) = 0.48 = f1(0.4) = f1(X̂1), µ̂1,1 =
1

2
[f1(X1) + f1(X̂1)] = 0.48,

f2(X1) = f2(−0.4) = 1 + 0.256 = 1.256, f2(X̂1) = f2(0.4) = 1− 0.256 = 0.744

µ̂2,1 =
1

2
[f2(X1) + f2(X̂1)] = 1.

c) For which function, f1 or f2, does the antithetic estimate give a better approximation to
the true mean? What about a function makes the antithetic approximation more or less
effective?

Answer: For f2 the approximation is exact. This is because, apart from its constant
part, f2 is antisymmetric, i.e., f2(−x) − 1 = −(f2(x) − 1). On the other hand, f1 is



symmetric, i.e., f1(−x) = f1(x). So, the values of f1 at X1 and X̂1 are the same, and no
extra information is gained from f1(X̂1). Thus the approximation of µ1 using antithetic
variates is poorer than the approximation of µ2 using antithetic variates.

In general, the variance of an antithetic variates Monte Carlo approximation is [1 +
corr(Y, Ŷ )] times the variance of an IID Monte Carlo approximation. Thus, situations
with negative corr(Y, Ŷ ) are preferred. For, f1, we have corr(Y, Ŷ ) = 1, while for f2, we
have corr(Y, Ŷ ) = −1.

4. (35 points)
We want to estimate µ =

∫ 1
0 f(x) dx. For i = 1, . . . , n, n > 1, define Yi = f

(
(i−Ui)/n

)
, where

U1, . . . , Un
IID∼ U [0, 1].

a) Is Y1 an unbiased estimate of µ?

Answer: Since

E(Yi) =

∫ 1

0
f
(
(i− u)/n

)
du

t=(i−u)/n
=

∫ (i−1)/n

i/n
f(t) (−n) dt = n

∫ i/n

(i−1)/n
f(t) dt

6=
∫ 1

0
f(x) dx = µ,

Y1, or any Yi is not an unbiased estimate of µ.

b) Is µ̂S,n = n−1
∑n

i=1 Yi an unbiased estimate of µ?

Answer: Using the work in part a),

E(µ̂S,n) =
1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

n

∫ i/n

(i−1)/n
f(t) dt =

∫ 1

0
f(x) dx = µ,

so, µ̂S,n is an unbiased estimate of µ.

c) Let J be a random variable distributed uniformly on {1, . . . , n} and independent of
U1, . . . , Un. Is YJ an unbiased estimate of µ?

Answer: Using the work in part a),

E(YJ |J = i) = E(Yi) = n

∫ i/n

(i−1)/n
f(t) dt.

So,

E(YJ) = EJ

[
E(YJ |J)

]
=

n∑
i=1

E(YJ |J = i) Pr(J = i)

=
n∑

i=1

n

∫ i/n

(i−1)/n
f(t) dt× 1

n
=

∫ 1

0
f(x) dx = µ,

and YJ is an unbiased estimate of µ.


