MATH 565 Monte Carlo Methods in Finance

Fred J. Hickernell

Test 2

Thursday, November 9, 2017

Instructions:

- i. This test has FOUR questions. Attempt them all. The maximum number of points is 100.
- ii. The time allowed is 75 minutes.
- iii. Keep at least four significant digits in your intermediate calculations and final answers.
- iv. This test is closed book, but you may use 4 double-sided letter-size sheets of notes.
- v. (Programmable) calculators are allowed, but they must not have stored text.
- vi. Show all your work to justify your answers. Answers without adequate justification will not receive credit.

1. (10 points)

Consider the three sequences of numbers that are *claimed* to be IID $\mathcal{U}[-1,1]$. Which one or more of these sequences *do not* look IID $\mathcal{U}[-1,1]$?

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
(a)	0.0086	0.7450	0.1590	0.2317	0.1489	0.3082	0.6583	0.9271
(b)	-0.0181	-0.2678	-0.4750	0.5970	0.9196	0.7675	-0.4288	0.5121
(c)	0.8108	-0.8108	0.0250	-0.0250	0.0660	-0.0660	0.1068	-0.1068

Answer: Sequence (a) has only positive numbers, which is unlikely since the X_i have equal probability of being negative or positive. Sequence (c) has alternating positive and negative numbers of the same magnitude, which is unlikely. In (c) it seems that X_{2i-1} and X_{2i} are perfectly negatively correlated. Sequence (b) has no suspicious features.

2. (30 points)

Generate a sequence of six IID numbers, Y_1, \ldots, Y_6 , that satisfy the following discrete probability distribution:

$$y$$
 1 2 3 4 5 $\mathbb{P}(Y=y)$ 0.3000 0.3000 0.2000 0.1000 0.1000

by means of the following six IID $\mathcal{U}[0,1]$ random numbers:

Answer: First we compute the cumulative distribution function (CDF) for Y. We also compute the inverse CDF.

y	1	2	3	4	5
$\mathbb{P}(Y=y)$	0.3000	0.3000	0.2000	0.1000	0.1000
$F_Y(y) = \mathbb{P}(Y \le y)$	0.3000	0.6000	0.8000	0.9000	1.0000
$y = F_Y^{-1}(x) \text{ for } x \in$	[0.0, 0.3)	[0.3, 0.6)	[0.6, 0.8)	[0.8, 0.9)	[0.9, 1.0]

Then we use the inverse CDF transformation to find Y_i in terms of X_i :

X_1	X_2	X_3	X_4	X_5	X_6
0.5533	0.9328	0.0048	0.8717	0.0826	0.8112
Y_1	Y_2	Y_3	Y_4	Y_5	Y_6
2	5	1	4	1	4

3. (30 points)

Consider a stock whose price is modeled by a geometric Brownian motion and is monitored monthly for three months. The initial price is \$40, the volatility is 50%, and the interest rate is 2%. Let

be IID $\mathcal{N}(0,1)$ variables.

a) Construct one stock price path for this stock.

Answer: Let $t_j = j/12$ for j = 1, 2, 3. We first construct the Brownian motion by

$$B(t_j) = B(t_{j-1}) + \sqrt{1/12}Z_j, \qquad j = 1, 2, 3.$$

Then we compute the stock price by

$$S(t_j) = S(0) \exp((r - \sigma^2/2)t_j + \sigma B(t_j)), \qquad j = 1, 2, 3, \quad \sigma = 0.5.$$

So,

j	0	1	2	3
t_{j}	0.0000	0.0833	0.1667	0.2500
$B(t_j)$	0.0000	-0.4109	-0.7339	-0.9609
$S(t_j)$	40.00	32.29	27.23	24.10

b) For the stock price path in a), what is the discounted payoff of a *European put* option with a strike price of \$50 that expires three months from now?

Answer: The payoff is $(\$50 - \$24.10)e^{-0.02 \times 1/4} = \25.77 .

c) For the stock price path in a), what is the discounted payoff of a *lookback put* option that expires three months from now?

Answer: Since the payoff is also $(\$40 - \$24.10)e^{-0.02 \times 1/4} = \15.82 , since \$40 is the highest price along the path.

2

d) For the stock price path in a), what is the discounted payoff of an *American put* option with a strike price of \$50 that expires three months from now? Assume that the exercise boundary is given as follows:

Explain why this discounted American payoff is greater than or is less than the discounted European payoff in part b).

Answer: The stock price first falls below the exercise boundary for t = 0.1667, so the payoff is $(\$50 - \$27.23)e^{-0.02 \times 1/6} = \22.69 . The option is exercised early because the expected value of holding the option at time 1/6 is less than the value of exercising then. But the value for this particular path is greater if the option is held. Unfortunately, the option holder cannot predict that.

4. (30 points)

Let Y be a random variable for which you wish to find $\mu = \mathbb{E}(Y)$. A Monte Carlo estimate of μ is

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n Y_i.$$

Let X be another random variable for which $\mu_X = \mathbb{E}(X)$ is known.

a) Let $(Y_1, X_1), (Y_2, X_2), \ldots$ be IID random vectors, and let $Y_{CV,i} = Y_i - \beta(X_i - \mu_X)$. For which value(s) of β is

$$\hat{\mu}_{\mathrm{CV},n} = \frac{1}{n} \sum_{i=1}^{n} Y_{\mathrm{CV},i}$$

an unbiased estimator of μ ?

Answer:

$$\mathbb{E}[Y_{CV,i}] = \mathbb{E}[Y_i - \beta(X_i - \mu_X)] = \mu, \text{ so } \mathbb{E}[\hat{\mu}_{CV,n}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[Y_{CV,i}] = \mu$$

for all β , and $\hat{\mu}_{CV,n}$ is an unbiased estimator of μ for all β .

b) Under what condition on the correlation between X and Y is the root mean square error of $\hat{\mu}_{\text{CV},n/2}$ no worse than the root mean square error of $\hat{\mu}_n$, assuming that β is chosen optimally?

Answer: For optimal β ,

$$\operatorname{RMSE}(\hat{\mu}_n) = \sqrt{\frac{\operatorname{var}(Y)}{n}}, \qquad \operatorname{RMSE}(\hat{\mu}_{CV,n/2}) = \sqrt{\frac{\operatorname{var}(Y_{CV})}{n/2}} = \sqrt{\frac{2\operatorname{var}(Y_{CV})}{n}},$$
$$2\operatorname{var}(Y_{CV}) = 2\operatorname{var}(Y)[1 - \operatorname{corr}^2(Y, X)].$$

So, we need $2[1 - \operatorname{corr}^2(Y, X)] \le 1$ to ensure that the root mean square error of $\hat{\mu}_{CV, n/2}$ no worse than the root mean square error of $\hat{\mu}_n$. This means that we need $|\operatorname{corr}(Y, X)| \ge 1/\sqrt{2} \approx 0.7071$.