Monte Carlo Methods

Introduction
Generating Samples
Markov Chain Monte Carlo
Improving Efficiency
Selected Topics

Git website and repository

Canvas

Introduction

Owen, Chapters 1 & 2

Assignment 1 Due Sep 5

MATH 565 Monte Carlo Methods, Fred Hickernell, Fall 2025

Monte Carlo Helps With Uncertainty [WSJ 2016]

• Finance — market forces, often modeled by stochastic processes driven by Brownian motion

- Finance market forces, often modeled by stochastic processes driven by Brownian motion
- Engineering variability of system parameters, sometimes modeled by Gaussian processes

- Finance market forces, often modeled by stochastic processes driven by Brownian motion
- Engineering variability of system parameters, sometimes modeled by Gaussian processes
- Image rendering can only trace some rays, must rely on a finite sample

- Finance market forces, often modeled by stochastic processes driven by Brownian motion
- Engineering variability of system parameters, sometimes modeled by Gaussian processes
- Image rendering can only trace some rays, must rely on a finite sample
- Bayesian inference the posterior probability distribution is a combination of a prior and what is learned from data

- Finance market forces, often modeled by stochastic processes driven by Brownian motion
- Engineering variability of system parameters, sometimes modeled by Gaussian processes
- Image rendering can only trace some rays, must rely on a finite sample
- Bayesian inference the posterior probability distribution is a combination of a prior and what is learned from data
- Neural networks many parameters need to be tuned, but one cannot search in all possible directions

- Finance market forces, often modeled by stochastic processes driven by Brownian motion
- Engineering variability of system parameters, sometimes modeled by Gaussian processes
- Image rendering can only trace some rays, must rely on a finite sample
- Bayesian inference the posterior probability distribution is a combination of a prior and what is learned from data
- Neural networks many parameters need to be tuned, but one cannot search in all possible directions
- Queues arrival times and service times of customers

How is this expressed quantitatively?

Y= random variable denoting quantity of interest =

option payoff
fluid pressure
pixel intensity
statistical model parameter
neural network parameter
service time

= f(X), where

X = multivariate random variable with a simpler distribution

We want to estimate the mean, variance, quantile, or probability distribution of Y using sample versions

Are we there yet?

You are visiting your friend and it will require

- A 5 minute walk to the 'L' station
- Waiting for the train, which arrives every 20 minutes
- Traveling 35 minutes by 'L'
- Catching a taxi at the 'L' destination
 - There is a 20% chance that the car is waiting for you
 - Otherwise the average wait time is 10 minutes
- A 12 minute taxi ride

How long should you plan for the trip to take?

Let's look at this Jupyter Notebook AreWeThereYet on the class website

Let me know your degree program?

- Go to menti.com
- Use code 6222 6078

Why should you attend synchronously?

- You will be better keep pace?
- You will get real time answers to questions?
- You can influence the pace and direction of the course?
- You can help your peers learn and benefit from them—partake in a leaning community
- To help me know you, in case you want a reference, or to add me to your LinkedIn network

Review of probability

Let Y be a random variable with a sample space $\mathcal{Y} \subseteq \mathbb{R}$

 $\mathbb{P}(Y \in \Omega)$ means the probability of the event Ω

F is the cumulative distribution function $F(y) := \mathbb{P}(Y \leq y), y \in \mathcal{Y}$

Q is the quantile function $Q(p) := \inf\{y \in \mathscr{Y} : F(y) \ge p\}, \quad 0$

$$\mathbb{E}[g(Y)] := \int_{\mathscr{Y}} g(y) \, \mathrm{d}F(y)$$
 is the expectation of $g(Y)$

discrete

continuous

$$\varrho(y) := \mathbb{P}(Y = y)$$

$$\mathbb{E}[g(Y)] = \sum_{y \in \mathscr{Y}} g(y) \, \varrho(y)$$

 ϱ is the probability mass function ϱ is the probability density function

$$\varrho(y) := F'(y)$$

$$\mathbb{E}[g(Y)] = \int_{y \in \mathscr{Y}} g(y) \, \varrho(y) \, dy$$

Moments

 $\mu:=\mathbb{E}(Y) \text{ is the mean of } Y$ $\sigma^2=\mathrm{var}(Y):=\mathbb{E}[(Y-\mu)^2] \text{ is the variance of } Y$ $\sigma \text{ is the standard deviation}$

$$cov(\mathbf{Y}) := (\mathbb{E}[(Y_j - \mu_j)(Y_k - \mu_k)])_{j,k=1}^d$$

is the covariance matrix of the random vector Y

Binomial Distribution

This is a coin-flipping distribution with the probability p of heads

$$Y \sim \mathsf{Binomial}(n,p) \qquad \mathsf{scipy.stats.binom}(\mathsf{n,\,p})$$

$$\varrho(y) := \mathbb{P}(Y=y) = \binom{n}{y} p^y (1-p)^{n-y}, \quad y=0,1,\dots,n$$

$$F(y) = \mathbb{P}(Y \leq y) = \sum_{j=0}^{\lfloor y \rfloor} \binom{n}{j} p^j (1-p)^{n-j}$$

$$Q(p) = \inf\{y \in \{0,1,\dots,n\} : F(y) \geq p\}$$

$$\mu = \mathbb{E}(Y) = np \qquad \sigma^2 = \mathrm{var}(Y) = np(1-p)$$

Multivariate normal/Gaussian distribution

Used in finance and uncertainty quantification

 $Y \sim \mathcal{N}(\mu, \Sigma) \quad \text{is a d-dimensional random vector} \\ \text{scipy.stats.multivariate_normal(mean, cov)}$

 $\mu=$ mean

 Σ = covariance matrix

$$\varrho(\boldsymbol{y}) := \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\boldsymbol{y} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{\mu})\right)$$

$$F(y) = \int_{(-\infty, y)} \varrho(z) dz$$

Sampling

Let Y be be a random variable, often Y = f(X)

 Y_1, Y_2, \dots be a sample

not necessarily random or independent and identically distributed (IID)

$$\widehat{\mu}_n := \frac{1}{n} \sum_{i=1}^n Y_i$$
 is the sample mean

$$\widehat{\sigma}_n^2 := \frac{1}{n-1} \sum_{i=1}^n (Y_i - \widehat{\mu}_n)^2$$
 is the sample variance

Under random sampling

Let Y be be a random variable, often Y = f(X)

$$Y_1,Y_2,\ldots\sim Y$$

$$\mathbb{E}(\widehat{\mu}_n)=rac{1}{n}\sum_{i=1}^n\mathbb{E}(Y_i)=\mu ext{ so }\widehat{\mu}_n ext{ is unbiased}$$

If in addition, Y_1, Y_2, \ldots are uncorrelated, then

$$\mathbb{E}(\widehat{\sigma}_n^2) = \sigma^2 \text{ so } \widehat{\sigma}_n^2 \text{ is unbiased}$$

$$\operatorname{mse}(\widehat{\mu}_n) := \mathbb{E}[(\mu - \widehat{\mu}_n)^2] = \operatorname{var}(\widehat{\mu}_n) = \frac{\sigma^2}{n}, \qquad \operatorname{rmse}(\widehat{\mu}_n) = \frac{\sigma}{\sqrt{n}}$$

Central Limit Theorem

Let Y be be a random variable, often Y = f(X)

$$Y_1,Y_2,\ldots \stackrel{\mathsf{IID}}{\sim} Y$$

The distribution of

$$\frac{\widehat{\mu}_n - \mu}{\sigma/\sqrt{n}}$$
 approaches $\mathcal{N}(0,1)$ as $n \to \infty$

which means that

$$\widehat{\mu}_n \sim \mathcal{N}(\mu, \sigma^2/n)$$
 for large n

Monte Carlo estimates of properties of Y

Let Y be a random variable and let Y_1, Y_2, \ldots be an IID random sample

Population Quantity	Sample Approximation
mean μ	$\widehat{\mu}_n \pm 2.58 \widehat{\sigma}_{n_0}^2, \; ext{np.mean(data)}$
variance σ^2	$\widehat{\sigma}_n^2$, np.var(data, ddof=1)
cumulative distribution function ${\cal F}$	empirical distribution function \widehat{F}_n statsmodels.distributions.empirical_distribution.ECDF(data)
quantile function Q	empirical quantile function \widehat{Q}_n np.quantile(data, probabilities)
probability density or mass function ϱ	historgram, np.histogram(data, bins = "auto") kernel density estimator, scipy.stats.gaussian_kde(data)

For μ we have an interval estimator, but for the others typically point estimators

Are we there yet?

You are visiting your friend and it will require

- A 5 minute walk to the 'L' station
- Waiting for the train, which arrives every 20 minutes
- Traveling 35 minutes by 'L'
- Catching a taxi at the 'L' destination
 - There is a 20% chance that the car is waiting for you
 - Otherwise the average wait time is 10 minutes
- A 12 minute taxi ride

How long should you plan for the trip to take?

Let's look at this Jupyter Notebook AreWeThereYet on the class website

Let me know your professional aspirations?

- Go to menti.com
- Use code 6222 6078

Conditional probability

Let (Y, Z) be be a vector of random variables

$$\begin{split} \mathbb{P}(Y = y \mid Z = z) &= \frac{\mathbb{P}(Y = y \& Z = z)}{\mathbb{P}(Z = z)} \\ \mathbb{P}(Y = y \mid Z = z) &= \frac{\mathbb{P}(Z = z \mid Y = y)\mathbb{P}(Y = y)}{\mathbb{P}(Z = z)} \text{ Bayes' Theorem} \\ \varrho_{Y\mid Z}(y \mid z) &= \frac{\varrho_{Y,Z}(y,z)}{\varrho_{Z}(z)} \\ \mathbb{E}(Y) &= \mathbb{E}_{Z} \big[\mathbb{E}_{Y}(Y \mid Z) \big] \\ \text{var}(Y) &= \mathbb{E}_{Z} \big[\text{var}_{Y}(Y \mid Z) \big] + \text{var}_{Z} \big[\mathbb{E}_{Y}(Y \mid Z) \big] \end{split}$$

Conditional Monte Carlo

Big Ideas

- Sample quantities, often using IID samples, used to estimate population properties of a random variable with a complex distribution, including
 - Means, variances, covariances
 - Probability density/mass functions, cumulative distribution functions, and quantile functions
- For means we have interval estimators, which indicate the uncertainty in our estimates, using the CLT
- For the other properties we have point estimators, i.e., only one approximate value for each thing to be estimated