### Monte Carlo Methods

Introduction
Generating Samples
Markov Chain Monte Carlo + Discrepancy
Improving Efficiency

Git website and repository

Canvas

Fred Hickernell, Fall 2025

**Selected Topics** 

**Updated 2025 September 22** 

# Markov Chain Monte Carlo (MCMC) + Discrepancy

Owen, Chapters 11-12

Assignment 3 due ??

Project Selection due Oct 1



#### Rate your confidence heading into Test 1

- Go to menti.com
- Use code 4923 2283

 Inverse cumulative distribution function applied to uniform samples works for simple cases

- Inverse cumulative distribution function applied to uniform samples works for simple cases
- Correlated multivariate Gaussian distributions are possible through affine transformations of univariate Gaussians

- Inverse cumulative distribution function applied to uniform samples works for simple cases
- Correlated multivariate Gaussian distributions are possible through affine transformations of univariate Gaussians
- Acceptance-rejection sampling

- Inverse cumulative distribution function applied to uniform samples works for simple cases
- Correlated multivariate Gaussian distributions are possible through affine transformations of univariate Gaussians
- Acceptance-rejection sampling
  - Propose from a simple density that you know bounds

- Inverse cumulative distribution function applied to uniform samples works for simple cases
- Correlated multivariate Gaussian distributions are possible through affine transformations of univariate Gaussians
- Acceptance-rejection sampling
  - Propose from a simple density that you know bounds
  - An unnormalized target density

- Inverse cumulative distribution function applied to uniform samples works for simple cases
- Correlated multivariate Gaussian distributions are possible through affine transformations of univariate Gaussians
- Acceptance-rejection sampling
  - Propose from a simple density that you know bounds
  - An unnormalized target density
  - May reject a lot of samples

- Inverse cumulative distribution function applied to uniform samples works for simple cases
- Correlated multivariate Gaussian distributions are possible through affine transformations of univariate Gaussians
- Acceptance-rejection sampling
  - Propose from a simple density that you know bounds
  - An unnormalized target density
  - May reject a lot of samples
- Markov chain Monte Carlo (MCMC) moves samples toward areas of higher target density

#### Metropolis-Hastings algorithm

#### Suppose that

- ullet You really want to sample X with known (unnormalized) target density arrho
- You have a proposal density  $\varrho_{\text{new}|\text{old}}$  to select the next point starting from where you are

```
Given X[0] For i = 0 to n-1 Generate Z \sim \varrho_{\text{new}|\text{old}}(\cdot | X_i), U \sim \mathcal{U}[0,1] If U \leq \min \left(1, \frac{\varrho(Z)\varrho_{\text{new}|\text{old}}(X_i|Z)}{\varrho(X_i)\varrho_{\text{new}|\text{old}}(Z|X_i)}\right) = \min \left(1, \frac{\text{joint density of first } Z \text{ then } X_i}{\text{joint density of first } X_i \text{ then } Z}\right) X[i+1] \leftarrow Z Else X[i+1] \leftarrow X[i]
```

Note that you always accept either the new or the old

#### Metropolis algorithm

If  $\varrho_{\text{new}|\text{old}}(x \mid z) = \varrho_{\text{new}|\text{old}}(z \mid x)$ , then this can be simplified

Metropolis sampling proceeds as follows

#### Advantages of and Challenges in MCMC

- Samples from complicated, unnormalized densities
- Easy to implement
- Proposal density and starting point need tuning to ensure that
  - Explore all the sample space and not miss out
  - Exploit sampling in regions where the density is large

#### How do we measure quality of MCMC

Short answer: We cannot easily

Longer answer: Given a symmetric, positive definite kernel,  $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ , the discrepancy, sometimes called the maximum mean discrepancy between two empirical distributions is defined by

$$D^{2}(\lbrace x_{i}\rbrace_{i=0}^{m-1}, \lbrace z_{i}\rbrace_{i=0}^{m-1}; K) = \frac{1}{m^{2}} \sum_{i,j=0}^{m-1} K(x_{i}, x_{j}) - \frac{2}{mn} \sum_{i,j=0}^{m-1,n-1} K(x_{i}, z_{j}) + \frac{1}{n^{2}} \sum_{i,j=0}^{n-1} K(z_{i}, z_{j})$$

Requires  $\mathcal{O}(\max(m,n)^2)$  operations

#### What is discrepancy?

#### The discrepancy measures

- The difference between two probability distributions
- The worst-case error in approximating an expectation/integral  $\mu=\mathbb{E}[f(X)]$  by a sample mean when f is in the unit ball of a Hilbert space with reproducing kernel K
- The root-mean square error in approximating an expectation/integral  $\mu=\mathbb{E}[f(X)]$  by a sample mean when f is an instance of a Gaussian process with covariance kernel K

Discrepancies from kernels were popularized by [Hickernell 1998] and [Gretton et al. 2012]

#### Symmetric, Positive Definite Kernels

• A square matrix, K, is symmetric and positive definite iff

$$K^{T} = K$$
 and  $c^{T}Kc > 0$  for all  $c \neq 0$ 

• A kernel,  $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ , is symmetric and positive definite iff

$$\mathsf{K} := \left(K(x_i, x_j)\right)_{i,j=0}^{n-1}$$
 is symmetric and positive definite

for all  $n \in \mathbb{N}$  and  $\{x_i\}_{i=0}^{n-1}$  with distinct elements, e.g.

$$K(t,x) = \exp(-\|t-x\|^2/h^2), \quad \mathcal{X} = \mathbb{R}^d,$$
 squared exponential

$$K(t, \mathbf{x}) = \prod_{\ell=1}^{d} \left[ 1 + \frac{\gamma_{\ell}^{2}}{2} \left( |t_{\ell} - 1/2| + |x_{\ell} - 1/2| - |t_{\ell} - x_{\ell}| \right) \right], \quad \mathcal{X} = [0, 1]^{d}$$

centered discrepancy

#### Discrepancy from kernels

#### Suppose that

- $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a symmetric, positive definite kernel,
- ${\mathscr X}$  is the sample space for random variables/vectors  ${\pmb X}$  and  ${\pmb Z}$
- ${m X}$  has CDF  $F_{m X}$  and  ${m Z}$  has CDF  $F_{m Z}$

Then discrepancy measures the difference between two distributions:

$$\begin{split} D^2\big(F_X,F_Z;K\big) &= \mathbb{E}_{X,X'\sim F_X}K(X,X') - 2\mathbb{E}_{X\sim F_X,Z\sim F_Z}K(X,Z) + \mathbb{E}_{Z,Z'\sim F_Z}K(Z,Z') \\ &= \int_{\mathcal{X}\times\mathcal{X}}K(x,x')\,\mathrm{d}F_X(x)\mathrm{d}F_X(x') - 2\int_{\mathcal{X}\times\mathcal{X}}K(x,z)\,\mathrm{d}F_X(x)\mathrm{d}F_Z(z) \\ &+ \int_{\mathcal{X}\times\mathcal{X}}K(z,z')\,\mathrm{d}F_Z(z)\mathrm{d}F_Z(z)\mathrm{d}F_Z(z') \geq 0 \end{split}$$

#### Discrepancy from kernels

Then discrepancy measures the difference between two distributions:

$$\begin{split} D^2 \big( F_X, F_Z; K \big) &= \int_{\mathcal{X} \times \mathcal{X}} K(x, x') \, \mathrm{d} F_X(x) \mathrm{d} F_X(x') - 2 \int_{\mathcal{X} \times \mathcal{X}} K(x, z) \, \mathrm{d} F_X(x) \mathrm{d} F_Z(z) \\ &+ \int_{\mathcal{X} \times \mathcal{X}} K(z, z') \, \mathrm{d} F_Z(z) \mathrm{d} F_Z(z') \\ &= \int_{\mathcal{X} \times \mathcal{X}} K(x, x') \, \mathrm{d} [F_X(x) - F_Z(x) \mathrm{d} [F_X(x') - F_Z(x')] \\ &= \int_{\mathcal{X} \times \mathcal{X}} K(x, x') \, \varrho_X(x) \varrho_X(x') \, \mathrm{d} x \mathrm{d} x' - 2 \int_{\mathcal{X} \times \mathcal{X}} K(x, z) \, \varrho_X(x) \varrho_Z(z) \, \mathrm{d} x \mathrm{d} z \\ &+ \int_{\mathcal{X} \times \mathcal{X}} K(z, z') \, \varrho_Z(z) \varrho_Z(z') \, \mathrm{d} z \mathrm{d} z' \geq 0 \end{split}$$

#### Discrepancy with empirical distributions

The formula for the squared discrepancy works if one or both of the distributions is the empirical distribution of a sample.

$$\begin{split} D^2 \big( F_X, F_{\{z_i\}_{i=0}^{n-1}}; K \big) &= D^2 \big( F_X, \{z_i\}_{i=0}^{n-1}; K \big) \\ &= \int_{\mathcal{X} \times \mathcal{X}} K(x, x') \, \mathrm{d} F_X(x) \mathrm{d} F_X(x') - \frac{2}{n} \sum_{i=0}^{n-1} \int_{\mathcal{X}} K(x, z_i) \, \mathrm{d} F_X(x) \end{split}$$

$$+\frac{1}{n^2} \sum_{i,j=0}^{n-1} K(z_i, z_j)$$

$$D^{2}(\lbrace x_{i}\rbrace_{i=0}^{m-1}, \lbrace z_{i}\rbrace_{i=0}^{n-1}; K) = \frac{1}{m^{2}} \sum_{i,j=0}^{m-1} K(x_{i}, x_{j}) - \frac{2}{mn} \sum_{i,j=0}^{m-1,n-1} K(x_{i}, z_{j}) + \frac{1}{n^{2}} \sum_{i,j=0}^{n-1} K(z_{i}, z_{j})$$

#### Unbiased estimates of squared discrepancy

The squared discrepancy is non-negative, but we can construct unbiased and possibly negative estimates of  $D^2(F_X, F_Z; K)$  based on IID samples  $\{x_i\}_{i=0}^{m-1}$  and/or  $\{z_i\}_{i=0}^{n-1}$ 

$$D_{\text{unb}}^{2}(F_{X}, \{z_{i}\}_{i=0}^{n-1}; K) = \int_{\mathcal{X} \times \mathcal{X}} K(x, x') \, \mathrm{d}\varrho_{X}(x) \, \mathrm{d}\varrho_{X}(x') - \frac{2}{n} \sum_{i=0}^{n-1} \int_{\mathcal{X}} K(x, z_{i}) \, \mathrm{d}\varrho_{X}(x)$$

$$+\frac{1}{n(n-1)}\sum_{i,j=0}^{n-1}K(z_i,z_j)$$

$$i \neq j$$

$$D_{\text{unb}}^{2}(\{x_{i}\}_{i=0}^{m-1}, \{z_{i}\}_{i=0}^{n-1}; K) = \frac{1}{m(m-1)} \sum_{i,j=0}^{m-1} K(x_{i}, x_{i}) - \frac{2}{mn} \sum_{i,j=0}^{m-1,n-1} K(x_{i}, z_{j})$$

$$i \neq j$$

$$+\frac{1}{n(n-1)}\sum_{i,j=0}^{n-1}K(z_i,z_j)$$

$$i \neq j$$

#### Discrepancy as worst case error

Let  $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  be a symmetric, positive definite kernel. Then

- $\mathcal{H}:=$  completion of  $\{c_0K(\,\cdot\,,x_0)+\cdots+c_{n-1}K(\,\cdot\,,x_{n-1}):n\in\mathbb{N},\,c_i\in\mathbb{R},\,x_i\in\mathcal{X}\}$  is a Hilbert space (vector space + inner product) of functions defined on  $\mathcal{X}$  with reproducing kernel K
- Which means  $f(x) = \langle K(\cdot, x), f \rangle_{\mathcal{H}}$  for all  $f \in \mathcal{H}, x \in \mathcal{X}$
- Suppose that  $\int_{\mathcal{X}\times\mathcal{X}} K(x,x')\,\mathrm{d}F_X(x)\mathrm{d}F_X(x')$  is defined and finite, which means that  $f\mapsto \int_{\mathcal{X}} f(x)\,\mathrm{d}F_X(x)$  is a bounded linear functional on  $\mathscr{H}$
- This means that cubature error,  $f\mapsto \int_{\mathcal{X}} f(x)\,\mathrm{d}F_X(x)-n^{-1}\sum_{i=0}^{n-1} f(z_i)$  is also a bounded linear functional on  $\mathcal{H}$

#### Discrepancy as worst case error (cont'd)

- Reproducing property:  $f(x) = \langle K(\cdot, x), f \rangle_{\mathcal{H}}$  for all  $f \in \mathcal{H}, x \in \mathcal{X}$
- Cubature error,  $f\mapsto \int_{\mathcal{X}} f(x)\,\mathrm{d}F_X(x)-n^{-1}\sum_{i=0}^{n-1} f(z_i)$ , is a bounded linear functional on  $\mathcal{H}$
- By the Riesz Representation Theorem there exists a  $\zeta \in \mathcal{H}$  such that

$$\int_{\mathcal{X}} f(\mathbf{x}) \, \mathrm{d}F_{\mathbf{X}}(\mathbf{x}) - \frac{1}{n} \sum_{i=0}^{n-1} f(z_i) = \langle \zeta, f \rangle_{\mathcal{H}} \quad \forall f \in \mathcal{H}$$

By the Cauchy-Schwarz inequality

$$\left| \int_{\mathcal{X}} f(\mathbf{x}) \, \mathrm{d}F_X(\mathbf{x}) - \frac{1}{n} \sum_{i=0}^{n-1} f(z_i) \right| = \left| \langle \zeta, f \rangle_{\mathcal{H}} \right| \le \|\zeta\|_{\mathcal{H}} \|f\|_{\mathcal{H}} \quad \forall f \in \mathcal{H}$$

### Discrepancy as worst case error (cont'd)

$$\left| \int_{\mathcal{X}} f(\mathbf{x}) \, \mathrm{d}F_{\mathbf{X}}(\mathbf{x}) - \frac{1}{n} \sum_{i=0}^{n-1} f(\mathbf{x}_i) \right| = \left| \langle \zeta, f \rangle_{\mathcal{H}} \right| \le \|\zeta\|_{\mathcal{H}} \|f\|_{\mathcal{H}} \quad \forall f \in \mathcal{H}$$

By the reproducing property and the Riesz Representation Theorem,

$$\zeta(x') = \langle K(\cdot, x'), \zeta \rangle_{\mathcal{H}} = \int_{\mathcal{X}} K(x, x') \, \mathrm{d}F_X(x) - \frac{1}{n} \sum_{i=0}^{n-1} K(z_i, x')$$

$$\|\zeta\|_{\mathcal{H}}^2 = \langle \zeta, \zeta \rangle_{\mathcal{H}} = \int_{\mathcal{X} \times \mathcal{X}} K(x, x') \, \mathrm{d}F_X(x) \, \mathrm{d}F_X(x') - \frac{2}{n} \sum_{i=0}^{n-1} \int_{\mathcal{X}} K(x, z_i) \, \mathrm{d}F_X(x)$$

$$+\frac{1}{n^2} \sum_{i,j=0}^{n-1} K(z_i, z_j) = D^2(F_X, \{z_i\}_{i=0}^{n-1}; K)$$

#### Discrepancy as average case error

Suppose that f is drawn from a Gaussian process with zero mean and covariance kernel  $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ . (Do not need to specify the sample space for f, which will almost surely have less smoothness than the Hilbert space with reproducing kernel K.)

The mean squared error for a deterministic cubature rule is

$$\mathbb{E}_{f \in \mathcal{GP}(0,K)} \left| \int_{\mathcal{X}} f(\boldsymbol{x}) \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}) - \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{z}_i) \right|^2$$

$$= \int_{\mathcal{X} \times \mathcal{X}} \mathbb{E}_{f \in \mathcal{GP}(0,K)} \left[ f(\boldsymbol{x}) f(\boldsymbol{x}') \right] \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}') - \frac{2}{n} \sum_{i=0}^{n-1} \int_{\mathcal{X}} \mathbb{E}_{f \in \mathcal{GP}(0,K)} \left[ f(\boldsymbol{x}) f(\boldsymbol{z}_i) \right] \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x})$$

$$+ \frac{1}{n^2} \sum_{i,j=0}^{n-1} \int_{\mathcal{X}} \mathbb{E}_{f \in \mathcal{GP}(0,K)} \left[ f(\boldsymbol{z}_i) f(\boldsymbol{z}_j) \right]$$

#### Discrepancy as average case error (cont'd)

The mean squared error for a deterministic cubature rule is

$$\mathbb{E}_{f \in \mathcal{GP}(0,K)} \left| \int_{\mathcal{X}} f(\boldsymbol{x}) \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}) - \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{z}_i) \right|^2$$

$$= \int_{\mathcal{X} \times \mathcal{X}} \mathbb{E}_{f \in \mathcal{GP}(0,K)} [f(\boldsymbol{x}) f(\boldsymbol{x}')] dF_{\boldsymbol{X}}(\boldsymbol{x}) dF_{\boldsymbol{X}}(\boldsymbol{x}') - \frac{2}{n} \sum_{i=0}^{n-1} \int_{\mathcal{X}} \mathbb{E}_{f \in \mathcal{GP}(0,K)} [f(\boldsymbol{x}) f(\boldsymbol{z}_i)] dF_{\boldsymbol{X}}(\boldsymbol{x})$$

$$+ \frac{1}{n^2} \sum_{i,j=0}^{n-1} \int_{\mathcal{X}} \mathbb{E}_{f \in \mathcal{GP}(0,K)} \left[ f(\boldsymbol{z}_i) f(\boldsymbol{z}_j) \right]$$

$$= \int_{\mathcal{X} \times \mathcal{X}} K(\boldsymbol{x}, \boldsymbol{x}') \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}) \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}') - \frac{2}{n} \sum_{i=0}^{n-1} \int_{\mathcal{X}} K(\boldsymbol{x}, \boldsymbol{z}_i) \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}) + \frac{1}{n^2} \sum_{i,j=0}^{n-1} \int_{\mathcal{X}} K(\boldsymbol{z}_i, (\boldsymbol{z}_j)) \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}') \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}') + \frac{1}{n^2} \sum_{i,j=0}^{n-1} \int_{\mathcal{X}} K(\boldsymbol{z}_i, (\boldsymbol{z}_j)) \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}') \,$$

#### Observations about discrepancy

- The value of the discrepancy depends on the choice of kernel, K, and the parameters that define it
  - K may be chosen for convenience
  - K may be chosen based on knowledge about properties of f, such as domain, smoothness, periodicity, importance of different coordinates
  - $D(\cdot,\cdot;c^2K) = |c|D(\cdot,\cdot;K)$
- $D(F_X,\{z\}_{i=0}^{n-1};K)$  measures the quality of  $\{z\}_{i=0}^{n-1}$  for estimating the mean,  $\mu=\mathbb{E}[f(X)]$ , by the sample mean  $\widehat{\mu}_n=n^{-1}\sum_{i=0}^{n-1}f(z)$  for
  - f in a Hilbert space,  $\mathscr{H}$ , with reproducing kernel K (don't need to know  $\|\cdot\|_{\mathscr{H}}$  explicitly) or
  - $f \sim \mathcal{GP}(0,K)$

#### Observations about discrepancy (cont'd)

The mean square discrepancy of an IID random sample is

$$\mathbb{E}\left[D^{2}\left(F_{\boldsymbol{X}}, \{\boldsymbol{z}_{i} \overset{\text{IID}}{\sim} F_{\boldsymbol{X}}\}_{i=0}^{n-1}; K\right) = \frac{1}{n} \left[\int_{\mathcal{X}} K(\boldsymbol{x}, \boldsymbol{x}) \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}) - \int_{\mathcal{X} \times \mathcal{X}} K(\boldsymbol{x}, \boldsymbol{x}') \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}) \, \mathrm{d}F_{\boldsymbol{X}}(\boldsymbol{x}')\right]$$

- The deterministic cubature error bound cannot be used constructively to bound the error because the norm of f cannot be estimated
- If  $f \sim \mathcal{GP}(0,K)$ , and the parameters of K are estimated by empirical Bayes (maximum likelihood), then one can construct credible intervals for the cubature error

$$\mathbb{P}_{f \in \mathcal{GP}(0,K)} \left[ \left| \int_{\mathcal{X}} f(\mathbf{x}) \, \mathrm{d}F_{X}(\mathbf{x}) - \frac{1}{n} \sum_{i=0}^{n-1} f(z_{i}) \right| \le \frac{2.58D(F_{X}, \{z_{i}\}_{i=0}^{n-1}; K)}{\sqrt{n}} \right] \ge 99 \%$$

#### Example of the Centered discrepancy

$$K(t, \mathbf{x}) = \prod_{\ell=1}^{d} \left[ 1 + \frac{\gamma_{\ell}^{2}}{2} \left( |t_{\ell} - 1/2| + |x_{\ell} - 1/2| - |t_{\ell} - x_{\ell}| \right) \right], \quad \mathcal{X} = [0, 1]^{d}$$

$$||f||_{\mathcal{H}}^{2} = ||f(0.5, ..., 0.5)||_{2}^{2}$$

$$+ \left| \left| \frac{\partial f(x_{1}, 0.5, ..., 0.5)}{\gamma_{1} \partial x_{1}} \right| \right|_{2}^{2} + \left| \left| \frac{\partial f(0.5, x_{2}, 0.5, ..., 0.5)}{\gamma_{2} \partial x_{2}} \right| \right|_{2}^{2} + ...$$

$$+ \left| \left| \frac{\partial f(x_{1}, x_{2}, 0.5, ..., 0.5)}{\gamma_{1} \gamma_{2} \partial x_{1} \partial x_{2}} \right| \right|_{2}^{2} + \left| \left| \frac{\partial f(x_{1}, 0.5, x_{3}, 0.5, ..., 0.5)}{\gamma_{1} \gamma_{3} \partial x_{1} \partial x_{3}} \right| \right|_{2}^{2} + ...$$

$$+ ... + \left| \left| \frac{\partial f(x_{1}, ..., x_{d})}{\gamma_{1} \cdots \gamma_{d} \partial x_{1} \cdots \partial x_{d}} \right| \right|_{2}^{2}$$

### Gibbs Sampler

### Overcoming challenges of MCMC