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“**Rate your confidence heading into Test 1
 (Go to menti.com
e Use code 4923 2283
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“**How do we generate samples when the
distribution is complicated?

* |nverse cumulative distribution function applied to uniform samples works for
simple cases

* Correlated multivariate Gaussian distributions are possible through affine
transformations of univariate Gaussians

* Acceptance-rejection sampling
- Propose from a simple density that you know bounds
- An unnormalized target density
- May reject a lot of samples

 Markov chain Monte Carlo (MCMC) moves samples toward areas of higher
target density
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Metropolls—Hastlngs algorithm

Suppose that
* You really want to sample X with known (unnormalized) target density ¢

» You have a proposal density onew|old 10 select the next point starting from
where you are
Given X[0]

For 1 = 0 to n-1
Generate Z~Qnew'01d(- |1 X)), U~ %[0,1]

. ( Q(Z)Qnewmm(Xi\Z)) | ( joint density of first Z then Xl.)
If U <min| 1, = min| 1,—— _ ,
0(X)Cnew(old(Z | X;) joint density of first X, then Z
X[1+1]<-Z
Else
X[i+1]<—X[i]

Note that you always accept either the new or the old
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Metropolls algorithm

If Qnewlold™ | 2) = Qnewo1d(Z [ X), then this can be simplified

Metropolis sampling proceeds as follows
Given X[0]
For 1 = 0 to n-1
Generate Z~ Qnew'old(- |1 X)), U~ %[0,1]

If U< min(l, oZ) )
0(X;)
)(I:i:k]_]e—zz

Else
X[i+1]+X[i]
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';'{;féidvantages of and Challenges in MCMC

e Samples from complicated, unnormalized densities

 Easy to implement

* Proposal density and starting point need tuning to ensure that

 EXxplore all the sample space and not miss out

* Exploit sampling in regions where the density is large




“**How do we measure quality of MCMC

Short answer: We cannot easily

Longer answer: Given a symmetric, positive definite kernel, K : & X X — R,
the discrepancy, sometimes called the maximum mean discrepancy between
two empirical distributions is defined by

m—1,n—1
D*({x}i g5  K) = 2K<xl,x>— y K(xl,z>+— ZK(Z,,Z)
1,j=0 1,j=0 1,j=0

Requires O (max(m, n)z) operations
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“*What is discrepancy?
The discrepancy measures

* The difference between two probability distributions

» The worst-case error in approximating an expectation/integral u = [E| f(X)]
by a sample mean when fis in the unit ball of a Hilbert space with
reproducing kernel K

* The root-mean square error in approximating an expectation/integral
u = [E[ f(X)] by a sample mean when f is an instance of a Gaussian process

with covariance kernel K

Discrepancies from kernels were popularized by [Hickernell 1998] and [Gretton
et al. 2012]
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%Symmetrlc Positive Definite Kernels

e A square matrix, K, is symmetric and positive definite iff

K'=K and c¢'Ke>Oforallc # 0

e Akernel, K : X' X I — R, is symmetric and positive definite iff

K = (K(x ))U 0 is symmetric and positive definite

for alln € N and {x W|th distinct elements, e.qg.

K(t,x) = eXp( —Ht — tz/hz), L = R4 squared exponential
d

K(t,x) = H

=1

2

+%(W— 2]+ |x, = 12] = lt; = x,1) |, & =[0,1]

centered discrepancy
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“*Discrepancy from kernels

Suppose that

e K: A XA — |

IS @ symmetric, positive definite kernel,

« X is the sample space for random variables/vectors X and Z

» X has CDF Fy a

nd Z has CDF F,

Then discrepancy measures the difference between two distributions:

D*(Fy, Fz;K) =

_X,X,NFXK(X’ X,) - 2

J Kx,x") dFy(x)dFy(x’) — ZJ'
A XX

_XNFX,ZNFZK(X’ Z) +

XX

+J K(z,2')dF4(z)dF4(z) 2 0
A XA

_Z,Z’NFZK (Z,2)

K(x,z)dFy(x)dF,(z)
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“#Discrepancy from kernels
Then discrepancy measures the difference between two distributions:

D*(Fy, Fz;K) = [

Kx,x")dFy(x)dFyx’) — 2 [ K(x,z) dFy(x)dF,(z)
XXX

XX

+ J K(z,z') dF,(z)dF,(z")
A XX

[ K(x,x")d[Fy(x) — Fz(x)d[Fy(x') — Fz(x")]
XX

[ K(x,x’) ox(x)ox(x’) dxdx’ — ZJ K(x,z) ox(x)o,(2) dxdz
XXX XX

+J K(z,2") 07(2)07(z")dzdz" > 0
XL
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“*Discrepancy with empirical distributions

The formula for the squared discrepancy works if one or both of the
distributions is the empirical distribution of a sample.

D*(Fy, Fi, -1 K) = D*(Fy, {z,}1); K)

n—1
— J Kx,x") dFy(x)dFy(x’) — - Z J K(x,z;) dFy(x)
XL X

n
2 K(z;z))

1=0
1,]=0
m—1,n—1

D ({x,}i5' z)i: K) = Z Keex) —— ), Kxpz) +— Z K2

1,]=0 1,]=0 1,]=0
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Unblased estimates of squared discrepancy

The squared discrepancy is hon-negative, but we can Construct unbiased and possibly negative estimates
of Dz(FX, Fy; K) based on IID samples {x;}' and/or 1z:} g

2 n—1. / / 2 S
D2y (Fy ()15 K) = | K(x.x)dox(x)dox(x) —= ) | K(x,z) dox(x)
IxL g Jda
n—1
| K(z;,z
n(n—l).ZO 2 2)
l, ] =
[ F#]
1 m—1 o m—1.n—1
X, Z: ; Kx;,x, K(x;,z;
unb<{ } { }l =0 ) m(m_ 1) .ZO ( ) o Z ( ])
l,] = 1,]=0
[ F# ]
1 n—1
| K(z;,z2
n(n—l)l.].z=O @2
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“**Discrepancy as worst case error

Let K : X X X — R be a symmetric, positive definite kernel. Then

o # := completion of
1oK(-,xp)+-+c, (K(-,x,_):neN, ¢ceR,x e}
is a Hilbert space (vector space + inner product) of functions defined on X
with reproducing kernel K

» Which means f(x) = (K( - ,x),f)pforalfe Z,x € X

» Suppose that J o K(x,x") dFy(x)dFy(x") is defined and finite, which means

that f — ng f(x) dFy(x) is a bounded linear functional on #Z

. This means that cubature error, f LX f(x)dFy(x) —n~! Z?:_ol f(z,) is also a
bounded linear functional on #
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“*Discrepancy as worst case error (cont’d)
» Reproducing property: f(x) = (K(-,x),f)pforalfe Z,x € X

_ ~1 . .
. Cubature error, f — J% fx)dFy(x) —n IZ?ZO f(z.), is a bounded linear
functional on #Z

» By the Riesz Representation Theorem there exists a { € # such that

1 n—1
J fla) dFy(x) =~ Y @) = &Pz VfE X
24 i=0

* By the Cauchy-Schwarz inequality

= [P | Wl lAl VFEe

1 n—1
j fl) dFy() — = Y fiz)
¥4 =0
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“#Discrepancy as worst case error (cont’d)

= || S WAl VFe

1 n—1
J flx) dFy(x) — = ) fix)
X (.
1=0
* By the reproducing property and the Riesz Representation Theorem,

1 n—1
() = (K(+,x),0) g = [ K(x,x") dFy(x) —— Y K(z;x)
t 1=0

x
n—1
1212 = (6.0 = [ K(x,x") dFy(x)dFy(x) — =) J K(x,z;) dFy(x)
IXL n-_oJa
1 n—1
+— ) K(z.z) = D*(Fy, {z,}17): K)
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“*Discrepancy as average case error

Suppose that f is drawn from a Gaussian process with zero mean and covariance

kernel K : X' X X — R. (Do not need to specify the sample space for f, which
will almost surely have less smoothness than the Hilbert space with reproducing

kernel K.)

The mean squared error for a deterministic cubature rule is

2

1 n—1
L eGP (0,K) /Xf(iﬂ‘) dFix () — — > f(zi)
1=0

— /XXX L eGP (0,K) [f(m)f(ml)} dFX(w)dFX(m/)—% Z/X L reGP(0,K) [f(w)f(zi)} dFx ()

| n12 Z /X 43fegp(o,K) [f(zi)f(zj)}

1,7=0
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“*Discrepancy as average case error (cont’d)

The mean squared error for a deterministic cubature rule is

1 n—1 2
L eGP (0,K) /X f(®)dFx(z) — — > f(z)
1=0

— /XXX L FegP(0,K) [f(w)f(ml)} dFX(a:)dFX(w’)—%Z—:/X L feGP(0,K) [f(w)f(zi)} dFx ()
| 5 Z/ LfEGP(0,K) [f( )f(Z])]
:/ K(x,z")dFx(x)dFx(x __Z/K:BZZ ) dF'x (x Inz Z/Kzz Z;)
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# JObservatlons about discrepancy

* The value of the discrepancy depends on the choice of kernel, K, and the parameters
that define it

« K may be chosen for convenience

« K may be chosen based on knowledge about properties of f, such as domain,
smoothness, periodicity, importance of different coordinates

+ D(-,-;¢°K) = |c|D(-, - ;K)

o D(Fy, {z}l _o > K) measures the quallty of {Z}—, I for estimating the mean,
u = E[f(X)], by the sample mean //tn = n_IZ? Olf(z) for

» fin a Hilbert space, #, with reproducing kernel K (don’t need to know ||-|| &
explicitly) or

. f~ CP0,K)
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“*Observations about discrepancy (cont’d)

 The mean square discrepancy of an |ID random sample is

[D?(Fx,{zi~ Fx}—); K) = . /X K(z,z)dFx(z) — K(w,w’)dFX(a})dFX(w’)_

i XXX

* [he deterministic cubature error bound cannot be used constructively to
bound the error because the norm of f cannot be estimated

e If f~ &9P0,K), and the parameters of K are estimated by empirical Bayes

(maximum likelihood), then one can construct credible intervals for the
cubature error

2.58D(Fy, {z}=): K)
280y g B |

Jn

_

1 n—1
[ floe) dFy(x) — = Y fiz)
¥4 =0

1€895(0,K) [
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“**Example of the Centered discrepancy

d

K, x) = H

=1

1+%(\tf — 172+ |x,— 1/2] — |2, —xf\)], L = [0,1]¢

1112, = I1(0.5.,...,0.5)]I3

_|_

df(x;,0.5,...,0.5)
Y1 0X)

2

df(x, x,,0.5,...,0.5)

Y172 0X10X)

of(xy, ..., x,)

9f(0.5,%,,0.5,...,0.5)

71“'743361“‘93%

Y2 0X)

Y173 0X10X3

df(x;,0.5,x3,0.5,...,0.5)

2

+ ...
2
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#'Gibbs Sampler
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“#*Overcoming challenges of MCMC
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