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“*\lariance Reduction
i = E[fX)] = E[gX)], X ~%[0,1]

Is 1t better to use

R :1 Il—-l R :1 Il—-l ||[)
//tf,n — ; z !f(Xl) or lug,n — ; z ! g(Xl)9 X()9 Xla coe Y %[Oal]d

to approximate u? Since both sample means are unbiased, we can compare their
variances (mean squared errors):

var(f(X)) var(Z, ) = var(g(X))
g.n/

Var(ﬁf,n) —
n n

so It depends on the variances of the two functions
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“#Keister example
= J cos(llellexp( —[lE]12)
Rd

X = (CI)(atl), s CI)(atd)), @ is the CDF of the standard normal

a® exp(—a?||t||*/2) ;

dx = ad¢(af1)“°¢(afd) dt = (27)d/2

l

t= (D '(x),..., 07 (x))/a

df?2
i =J ) cos (||(@~ ', ... @7 xp) | 1a)
[0,1]4

afd

2 —a’ 2
X exp(— 255 (CID_l(xl), . CD_I(xd)) ) dx, (a? < 2)

Whole family f(x; a) for which u = E[f(X; a)] for X ~ %[0,1]¢
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“*\Jariable transformations

Suppose that you want to approximate

H = J g(t)dt

by Monte Carlo. You need to write it as an expectation. Let# = y(x), for some
invertible transformation, v : & — . Define the Jacobian determinant as

J(m;¢) = det((ij)Zj), J(t;¢_1) — det((ag;jl)ij)? J(TP(ZE)ﬂP_l) — J(wl; )
Then

= [ gtwi@)|J@ib)|de = [ gl

) e

) S —
f ()
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“#=\ariable transformations

Ho= J g)dt ="
I
Let t = w(x), for some invertible transformation, yw : & — . Then

= [ gw@) @) de = [ P 5@ of@) do = Bx- 7 (X)

N— e —
f(x)

if X ~ %[0,1]¢ (because we know how generate uniform samples), then

= [ g@) (@i $)] de = Exoggoalf(X)
TR
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“**Random variable transformations
et
o T be a random variable with sample space & and density ¢

« X be arandom variable with sample space & and density Oy

« T = w(X), for some invertible transformation, y : & — . Then

or(®) = ox(w 'Ot W), or(w(x)) = ox()|Jw(x));p )| = QX@
|J(x; )]
H= J h() op(t) dt = k4, [(T)] = Ex.., [1(p(X))] = J h(y(x)) ox(x) dx
. gzt) J 8
h
or =J Wix)) eryx) [J(x;w)| ox(x) dx =J h(y(x)) ox(x) dx
o4 Ox(x) X
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“Importance sampling

Suppose that you want to approximate

likelihood
ratio

e N

= Bror [H(T) = [ @) or(t)dt = [ h(e) 220 ox (6t = Bxv[£(X)
D ——

f(t)

We try to choose @y to make var| f(X)] small when doing IID sampling. If

T = w(X) for X ~ 2[0,1]%—since often find generate non-uniform samples
from uniform ones—then

y =J h(t) or(t) dt = Eq,_, [W(T)] = Ex o011l hp(X))] =J h(p(x)) dx
T [0,1]¢
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“*Ex. Brownian motion with drift

In computational finance certain outcomes, such as positive option payoffs,
may be rare

* Adding a drift to the Brownian motion increases the probability that asset
paths yield positive payoffs and

 Reduces the variance of our estimator of the option price (population mean)

 Paths with positive payoffs receive smaller sample weights to compensate
and keep the mean the same

prce = [ payolt(e) o(@) dz, ofa) = “PZZE ¥ = inr 1)

Here the density @ Is a discretized Brownian motion

d
2,)=1
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%Ex Brownian motion with drift cont’d

price = /Rd payoff () o(x) d
exp(—x ' Xtz /2)
Vv (2m)d[x

d
2,7=1

o(x) = , X = (min(t;,t;))

We importance sample:

o (@) = exp(—(m—a) >~ (a:—a)/Z)’ . oz(tl,...,td)T

Vv (2m)d|X]
o(x)

Odrift (213)

price = / payoft (z) exp(—awq + OéQtd/Q) Qdrift () d
Rd

likelihood ratio = = exp(—axg + o ty/2)

Note that the weight gets smaller as ax, increases or aztd decreases
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c#\/ariable transformation / importance sampling
" observations

» Variable transformation and importance sampling are intertwined

* The choice of sampling density or variable transformation affects the variance
of the sample mean

e You must choose the variable transformation so that
« The Jacobian determinant, J(x; y), is finite

» The probability density, ¢x(x), does not vanish unless integrand vanishes

* You might try pilot samples to help choose transformation
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“*Control variates

u=LElf(X)] < pu=E[/X)-pimX)—"-—= )N, (X)]
provided that E[#(X)] = ---E[7,,(X)] = 0. Want to arrange such that
var[ f((X) — pim(X) — -+ — p,m,,(X)] < var[ f(X)]
Then
n—1
Hey , = %Z LX) —pin(X;) — - —p,n,(X;)] converges faster than ji, = — 20 (X))

How do we minimize var[ f(X) — f,n,(X) — - (X)]?

m;/]m
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“*Control variates (cont’d)

A 1 n—1
ficv, =— ), LX) = Bim(X) = -+ = B, 1,(X)]
=0

How do we minimize var| f(X) — pn(X) — --- = p,1,(X)]? Use least squares
regression with centered response and explanatory variables to choose f:

e

B = argmin|y — Hb|P
b

f(xo) — pin m(xo) — ﬂm,n T Nm (o) — ﬁnm,n
where y = : , H= : :
f(Tn-1) — n 771(% 1) _ﬁm,n o N (Tp—1) _ﬁnm,n
1 n—1 1 n—1
ﬁn: EZf(wZ)v :unln: _an ajz SRR ﬁnm,n — E nm(wz>
1=0 1=0
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“*Least Squares

How do we solve

A

B = argminHy — Hb||? = argmin(y — Hb)* (y — Hb)
b b

Let

b=(H'H)'H'y +c

Then
—H[H"H)"'H "y + €]

| —H(H"H)"'H ]y + He|"
([l = HHTH)"HT]y + He) ' ([l — HHTH)"'HT ]y + Hc)
—y [—HH'H)"'H'ly +c'H'"Hc

|
<

|y — Hb)? |

So the optimum comes by settingc = () o1



Control variates

» Should be clever in choosing the 7;

 Good choices can decrease the sample size required

 Bad choices only hurt in terms of increased computation time, but not
Increased sample size

e The ﬁ] should be chosen by least squares for [ID sampling

« For low discrepancy sequences, the ,BJ should be chosen to reduce the
variation (not variance)

15




