Monte Carlo Methods

Introduction
Generating Samples
Markov Chain Monte Carlo + Discrepancy
Improving Efficiency
Selected Topics

Git website and repository

Canvas

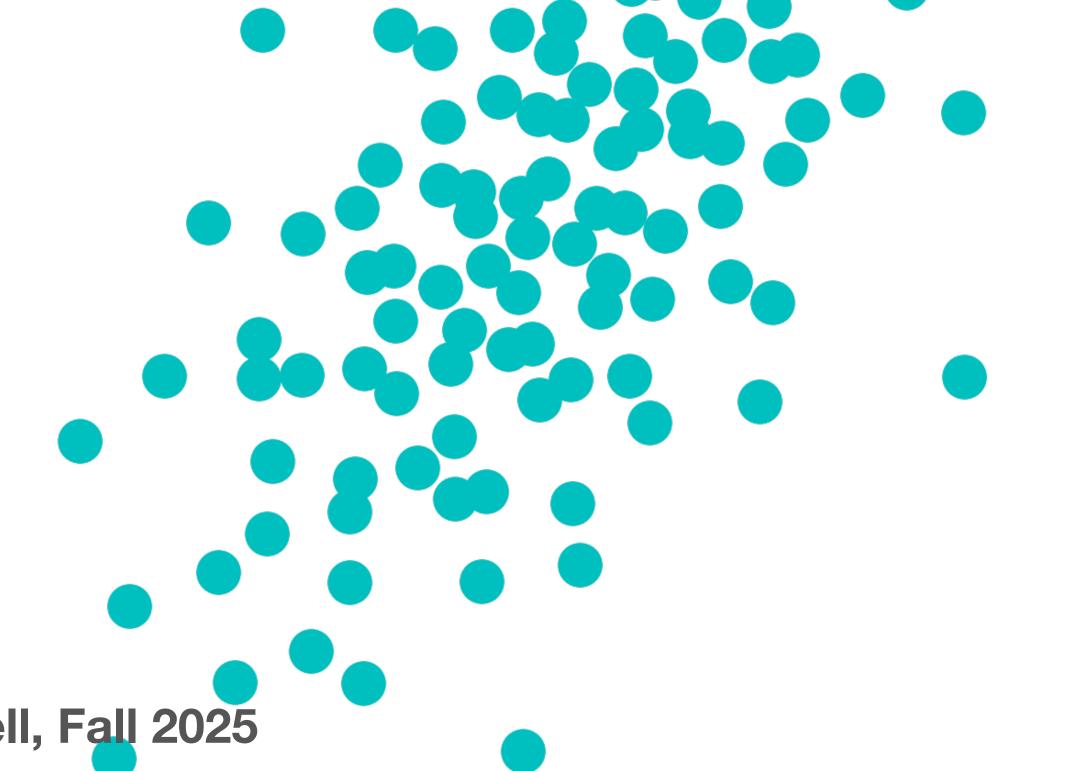
Fred Hickernell, Fall 2025

Updated 2025 October 22

Improving Efficiency

Owen, Chapters ??

Test 2 Oct 29



MATH 565 Monte Carlo Methods, Fred Hickernell, Fall 2025

Variance Reduction

$$\mu = \mathbb{E}[f(X)] = \mathbb{E}[g(X)], \quad X \sim \mathcal{U}[0,1]^d$$

Is it better to use

$$\widehat{\mu}_{f,n} = \frac{1}{n} \sum_{i=0}^{n-1} f(X_i) \quad \text{or} \quad \widehat{\mu}_{g,n} = \frac{1}{n} \sum_{i=0}^{n-1} g(X_i), \qquad X_0, X_1, \dots \stackrel{\text{ID}}{\sim} \mathcal{U}[0,1]^d$$

to approximate μ ? Since both sample means are unbiased, we can compare their variances (mean squared errors):

$$\operatorname{var}(\widehat{\mu}_{f,n}) = \frac{\operatorname{var}(f(X))}{n}$$
 $\operatorname{var}(\widehat{\mu}_{g,n}) = \frac{\operatorname{var}(g(X))}{n}$

so it depends on the variances of the two functions

Keister example

$$\begin{split} \mu &= \int_{\mathbb{R}^d} \cos(\|t\|) \exp(-\|t\|^2) \, \mathrm{d}t \\ x &= \left(\Phi(at_1), \, \ldots, \Phi(at_d) \right), \quad \Phi \text{ is the CDF of the standard normal} \\ \mathrm{d}x &= a^d \phi(at_1) \cdots \phi(at_d) \, \mathrm{d}t = \frac{a^d \exp(-a^2 \|t\|^2/2)}{(2\pi)^{d/2}} \, \mathrm{d}t \\ t &= \left(\Phi^{-1}(x_1), \, \ldots, \Phi^{-1}(x_d) \right) / a \\ \mu &= \int_{[0,1]^d} \frac{(2\pi)^{d/2}}{a^d} \cos \left(\left\| \left(\Phi^{-1}(x_1), \, \ldots, \Phi^{-1}(x_d) \right) \right\| / a \right) \\ &\times \exp\left(-\frac{2-a^2}{2a^2} \left\| \left(\Phi^{-1}(x_1), \, \ldots, \Phi^{-1}(x_d) \right) \right\|^2 \right) \mathrm{d}x, \qquad (a^2 \le 2) \end{split}$$

Whole family $f(\mathbf{x}; a)$ for which $\mu = \mathbb{E}[f(\mathbf{X}; a)]$ for $\mathbf{X} \sim \mathcal{U}[0, 1]^d$

Variable transformations

Suppose that you want to approximate

$$\mu = \int_{\mathscr{T}} g(t) \, \mathrm{d}t$$

by Monte Carlo. You need to write it as an expectation. Let $t = \psi(x)$, for some invertible transformation, $\psi: \mathcal{X} \to \mathcal{T}$. Define the Jacobian determinant as

$$J(\boldsymbol{x};\boldsymbol{\psi}) := \det\left(\left(\frac{\partial \psi_i}{\partial x_j}\right)_{i,j=1}^d\right), \quad J(\boldsymbol{t};\boldsymbol{\psi}^{-1}) := \det\left(\left(\frac{\partial \psi_i^{-1}}{\partial t_j}\right)_{i,j=1}^d\right), \quad J(\boldsymbol{\psi}(\boldsymbol{x});\boldsymbol{\psi}^{-1}) = \frac{1}{J(\boldsymbol{x};\boldsymbol{\psi})}$$

Then

$$\mu = \int_{\mathcal{X}} g(\boldsymbol{\psi}(\boldsymbol{x})) \left| J(\boldsymbol{x}; \boldsymbol{\psi}) \right| d\boldsymbol{x} = \int_{\mathcal{X}} \underbrace{\frac{g(\boldsymbol{\psi}(\boldsymbol{x}))}{\varrho_{\boldsymbol{X}}(\boldsymbol{x})} \left| J(\boldsymbol{x}; \boldsymbol{\psi}) \right|}_{f(\boldsymbol{x})} \varrho_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x} = \mathbb{E}_{\boldsymbol{X} \sim \varrho_{\boldsymbol{X}}} [f(\boldsymbol{X})]$$

Variable transformations

$$\mu = \int_{\mathscr{T}} g(t) \, \mathrm{d}t = ?$$

Let $t = \psi(x)$, for some invertible transformation, $\psi: \mathcal{X} \to \mathcal{T}$. Then

$$\mu = \int_{\mathcal{X}} g(\boldsymbol{\psi}(\boldsymbol{x})) \left| J(\boldsymbol{x}; \boldsymbol{\psi}) \right| d\boldsymbol{x} = \int_{\mathcal{X}} \underbrace{\frac{g(\boldsymbol{\psi}(\boldsymbol{x}))}{\varrho(\boldsymbol{x})} \left| J(\boldsymbol{x}; \boldsymbol{\psi}) \right|}_{f(\boldsymbol{x})} \varrho(\boldsymbol{x}) d\boldsymbol{x} = \mathbb{E}_{\boldsymbol{X} \sim \varrho}[f(\boldsymbol{X})]$$

If $X \sim \mathcal{U}[0,1]^d$ (because we know how generate uniform samples), then

$$\mu = \int_{[0,1]^d} \underbrace{g(\boldsymbol{\psi}(\boldsymbol{x})) |J(\boldsymbol{x};\boldsymbol{\psi})|}_{f(\boldsymbol{x})} d\boldsymbol{x} = \mathbb{E}_{\boldsymbol{X} \sim \mathscr{U}[0,1]^d} [f(\boldsymbol{X})]$$

Random variable transformations

Let

- $\emph{\textbf{T}}$ be a random variable with sample space $\mathcal T$ and density $\varrho_{\emph{\textbf{T}}}$
- X be a random variable with sample space $\mathcal X$ and density ϱ_X
- $T = \psi(X)$, for some invertible transformation, $\psi: \mathcal{X} \to \mathcal{T}$. Then

$$\begin{aligned} \varrho_T(t) &= \varrho_X(\psi^{-1}(t))|J(t;\psi^{-1})|, \qquad \varrho_T(\psi(x)) = \varrho_X(x)|J(\psi(x));\psi^{-1})| = \frac{\varrho_X(x)}{|J(x;\psi)|} \\ \mu &= \int_{\mathcal{T}} \underbrace{h(t)\,\varrho_T(t)}_{g(t)} \,\mathrm{d}t = \mathbb{E}_{T \sim \varrho_T}[h(T)] = \mathbb{E}_{X \sim \varrho_X}[h(\psi(X))] \qquad = \int_{\mathcal{X}} h(\psi(x))\,\varrho_X(x) \,\mathrm{d}x \\ \mathrm{or} &= \int_{\mathcal{X}} \frac{h(\psi(x))\,\varrho_T(\psi(x))}{\varrho_X(x)} \,|J(x;\psi)|\,\varrho_X(x) \,\mathrm{d}x \end{aligned}$$

Importance sampling

Suppose that you want to approximate

$$\mu = \mathbb{E}_{\boldsymbol{T} \sim \varrho_{\boldsymbol{T}}}[h(\boldsymbol{T})] = \int_{\mathcal{T}} h(\boldsymbol{t}) \, \varrho_{\boldsymbol{T}}(\boldsymbol{t}) \, \mathrm{d}\boldsymbol{t} = \int_{\mathcal{T}} \underbrace{h(\boldsymbol{t})}_{f(\boldsymbol{t})} \underbrace{\frac{\varrho_{\boldsymbol{T}}(\boldsymbol{t})}{\varrho_{\boldsymbol{X}}(\boldsymbol{t})}}_{f(\boldsymbol{t})} \, \varrho_{\boldsymbol{X}}(\boldsymbol{t}) \, \mathrm{d}\boldsymbol{t} = \mathbb{E}_{\boldsymbol{X} \sim \varrho_{\boldsymbol{X}}}[f(\boldsymbol{X})]$$

We try to choose ϱ_X to make $\mathrm{var}[f(X)]$ small when doing IID sampling. If $T=\psi(X)$ for $X\sim \mathcal{X}[0,1]^d-$ since often find generate non-uniform samples from uniform ones—then

$$\mu = \int_{\mathcal{T}} h(t) \, \varrho_{T}(t) \, \mathrm{d}t = \mathbb{E}_{T \sim \varrho_{T}}[h(T)] = \mathbb{E}_{X \sim \mathcal{U}[0,1]^{d}}[h(\psi(X))] = \int_{[0,1]^{d}} h(\psi(X)) \, \mathrm{d}x$$

Ex. Brownian motion with drift

In computational finance certain outcomes, such as positive option payoffs, may be rare

- Adding a drift to the Brownian motion increases the probability that asset paths yield positive payoffs and
- Reduces the variance of our estimator of the option price (population mean)
- Paths with positive payoffs receive smaller sample weights to compensate and keep the mean the same

$$\text{price} = \int_{\mathbb{R}^d} \text{payoff}(\boldsymbol{x}) \, \varrho(\boldsymbol{x}) \, d\boldsymbol{x}, \quad \varrho(\boldsymbol{x}) = \frac{\exp(-\boldsymbol{x}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{x}/2)}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}}, \quad \boldsymbol{\Sigma} = \left(\min(t_i, t_j)\right)_{i,j=1}^d$$

Here the density ϱ is a discretized Brownian motion

Ex. Brownian motion with drift cont'd

$$\operatorname{price} = \int_{\mathbb{R}^d} \operatorname{payoff}(\boldsymbol{x}) \, \varrho(\boldsymbol{x}) \, d\boldsymbol{x}$$
$$\varrho(\boldsymbol{x}) = \frac{\exp(-\boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}/2)}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}}, \quad \boldsymbol{\Sigma} = \left(\min(t_i, t_j)\right)_{i,j=1}^d$$

We importance sample:

$$\varrho_{\text{drift}}(\boldsymbol{x}) = \frac{\exp\left(-(\boldsymbol{x} - \boldsymbol{a})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{a})/2\right)}{\sqrt{(2\pi)^{d} |\boldsymbol{\Sigma}|}}, \quad \boldsymbol{a} = \alpha(t_{1}, \dots, t_{d})^{\top}$$

$$\text{likelihood ratio} = \frac{\varrho(\boldsymbol{x})}{\varrho_{\text{drift}}(\boldsymbol{x})} = \exp(-\alpha x_{d} + \alpha^{2} t_{d}/2)$$

$$\text{price} = \int_{\mathbb{R}^{d}} \operatorname{payoff}(\boldsymbol{x}) \exp(-\alpha x_{d} + \alpha^{2} t_{d}/2) \, \varrho_{\text{drift}}(\boldsymbol{x}) \, d\boldsymbol{x}$$

Note that the weight gets smaller as αx_d increases or $\alpha^2 t_d$ decreases

Variable transformation / importance sampling observations

- Variable transformation and importance sampling are intertwined
- The choice of sampling density or variable transformation affects the variance of the sample mean
- You must choose the variable transformation so that
 - The Jacobian determinant, $J(x; \psi)$, is finite
 - The probability density, $\varrho_X(x)$, does not vanish unless integrand vanishes
- You might try pilot samples to help choose transformation

Control variates

$$\mu = \mathbb{E}[f(\mathbf{X})] \iff \mu = \mathbb{E}[f(\mathbf{X}) - \beta_1 \eta_1(\mathbf{X}) - \dots - \beta_m \eta_m(\mathbf{X})]$$

provided that $\mathbb{E}[\eta_1(X)] = \cdots \mathbb{E}[\eta_m(X)] = 0$. Want to arrange such that

$$var[f(X) - \beta_1 \eta_1(X) - \dots - \beta_m \eta_m(X)] \le var[f(X)]$$

Then

$$\hat{\mu}_{\text{CV},n} = \frac{1}{n} \sum_{i=0}^{n-1} \left[f(\boldsymbol{X}_i) - \beta_1 \eta_1(\boldsymbol{X}_i) - \dots - \beta_m \eta_m(\boldsymbol{X}_i) \right] \text{ converges faster than } \hat{\mu}_n = \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{X}_i)$$

How do we minimize $var[f(X) - \beta_1 \eta_1(X) - \cdots - \beta_m \eta_m(X)]$?

Control variates (cont'd)

$$\hat{\mu}_{\text{CV},n} = \frac{1}{n} \sum_{i=0}^{n-1} \left[f(X_i) - \beta_1 \eta_1(X_i) - \dots - \beta_m \eta_m(X_i) \right]$$

How do we minimize $\text{var}[f(X) - \beta_1 \eta_1(X) - \cdots - \beta_m \eta_m(X)]$? Use least squares regression with centered response and explanatory variables to choose $\hat{\beta}$:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{b}}{\operatorname{argmin}} \|\boldsymbol{y} - \mathsf{H}\boldsymbol{b}\|^2$$
where $\boldsymbol{y} = \begin{pmatrix} f(\boldsymbol{x}_0) - \widehat{\mu}_n \\ \vdots \\ f(\boldsymbol{x}_{n-1}) - \widehat{\mu}_n \end{pmatrix}$, $\mathsf{H} = \begin{pmatrix} \eta_1(\boldsymbol{x}_0) - \widehat{\mu}_{\eta_1,n} & \cdots & \eta_m(\boldsymbol{x}_0) - \widehat{\mu}_{\eta_m,n} \\ \vdots & & \vdots \\ \eta_1(\boldsymbol{x}_{n-1}) - \widehat{\mu}_{\eta_1,n} & \cdots & \eta_m(\boldsymbol{x}_{n-1}) - \widehat{\mu}_{\eta_m,n} \end{pmatrix}$

$$\widehat{\mu}_n = \frac{1}{n} \sum_{i=0}^{n-1} f(\boldsymbol{x}_i), \qquad \widehat{\mu}_{\eta_1,n} = \frac{1}{n} \sum_{i=0}^{n-1} \eta_1(\boldsymbol{x}_i), \dots, \ \widehat{\mu}_{\eta_m,n} = \frac{1}{n} \sum_{i=0}^{n-1} \eta_m(\boldsymbol{x}_i)$$

Least Squares

How do we solve

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{b}}{\operatorname{argmin}} \|\boldsymbol{y} - \mathbf{H}\boldsymbol{b}\|^2 = \underset{\boldsymbol{b}}{\operatorname{argmin}} (\boldsymbol{y} - \mathbf{H}\boldsymbol{b})^T (\boldsymbol{y} - \mathbf{H}\boldsymbol{b})$$

Let

$$\boldsymbol{b} = (\mathsf{H}^{\top}\mathsf{H})^{-1}\mathsf{H}^{\top}\boldsymbol{y} + \boldsymbol{c}$$

Then
$$\|\boldsymbol{y} - \mathsf{H}\boldsymbol{b}\|^2 = \|\boldsymbol{y} - \mathsf{H}[(\mathsf{H}^{\top}\mathsf{H})^{-1}\mathsf{H}^{\top}\boldsymbol{y} + \boldsymbol{c}]\|^2$$

$$= \|[\mathsf{I} - \mathsf{H}(\mathsf{H}^{\top}\mathsf{H})^{-1}\mathsf{H}^{\top}]\boldsymbol{y} + \mathsf{H}\boldsymbol{c}\|^2$$

$$= ([\mathsf{I} - \mathsf{H}(\mathsf{H}^{T}\mathsf{H})^{-1}\mathsf{H}^{\top}]\boldsymbol{y} + \mathsf{H}\boldsymbol{c})^{\top}([\mathsf{I} - \mathsf{H}(\mathsf{H}^{\top}\mathsf{H})^{-1}\mathsf{H}^{\top}]\boldsymbol{y} + \mathsf{H}\boldsymbol{c})$$

$$= \boldsymbol{y}^{\top}[\mathsf{I} - \mathsf{H}(\mathsf{H}^{\top}\mathsf{H})^{-1}\mathsf{H}^{\top}]\boldsymbol{y} + \boldsymbol{c}^{\top}\mathsf{H}^{\top}\mathsf{H}\boldsymbol{c}$$

So the optimum comes by setting $c=\mathbf{0}$

Control variates

- Should be clever in choosing the η_i
 - Good choices can decrease the sample size required
 - Bad choices only hurt in terms of increased computation time, but not increased sample size
- The β_i should be chosen by least squares for IID sampling
- For low discrepancy sequences, the β_j should be chosen to reduce the variation (not variance)