Monte Carlo Methods

Introduction
Generating Samples
Markov Chain Monte Carlo + Discrepancy
Improving Efficiency
Selected Topics

Git website and repository
Canvas

Fred Hickernell, Fall 2025 ®

https://qmcsoftware.github.io/MATH565Fall2025/
https://github.com/QMCSoftware/MATH565Fall2025
https://iit.instructure.com/courses/17839

Selected Topics

Owen, Chapters ??7?
Project Presentations Nov 24-25
Take-Home Final Available Dec 3

Take-Home Final Due and
In-Class Final Dec 11, 2-4PM,
WH 115

MATH 565 Monte Carlo Methods, Fred Hicker‘ell, Fw 202

https://artowen.su.domains/mc/

“*Parallel Computing

Many personal computers now have GPUs built in. This allows one to perform
computations in parallel using PyTorch. Here are some things to keep in mind

 Monte Carlo calculations are pleasantly parallel because the function values
can be obtained independently, and one can even compute multiple
expectations independently.

» Calculations on GPUs are typically using 32-bit floating point, not 64-bit
floating point. This means that we have about 6 significant digits of accuracy,

not 15.

* For small problems, GPUs may not be better than CPUs, but for large
numbers of samples or large numbers of similar problems, the speed-up can

be impressive.

3 of 12

https://pytorch.org

“#Gradient Descent
Optimization problems take the form

~argmin

9 eR”

Gradient descent updates the estimate of 6. iteratively by moving downhill:

0, given, 6,., =0, —nVLoss(@,),

0. Loss(0)

where 7 Is the step size or learning rate.

» This will often converge since VLoss(#,) — 0 as 8, — 0.

 But it may converge to a local minimum

* This may require more steps than methods that use second derivatives, but
each step should be cheaper and easier to compute

4 of 12

“*'Stochastic Gradient Descent

Loss function in regression often take the form
N
Loss(0) = Z loss (0; data), e.g., loss(@; data) = [y; — 0, exp(6-x,)]°
i=1

The loss to be optimized is a sum of many losses. If /V is large, then the
gradient Is expensive. An alternative is stochastic gradient descent

0 given, 0, =0, —nVloss, (6,)

where 1, [, ... are chosen IID uniform over 1,..., N, which is cheap.

5 of 12

%Stochastlc Gradient Descent

Loss function in regression often take the form
N
Loss(0) = Z loss (@; data), e.g., loss(0; data) = [y, — 0, exp(6,x,)]*

gradient Is expensive. An alternative is stochastic gradient descent

vanilla 6y, = 0, —nVloss;, (0})
1o
v/1+ k/100

decayingn 0x.1 = 0 — niVloss;, (0r), nx =

B
- 1
mini-batch 0.1 = 0 — N5 Z Vloss;, . (0r), ik; 2 w{l,...,N}

inj=1

B
L 1
mini-batch + decay 0.1 = 0 — (3= Z Vloss;, . (0r), ik; o w{1,..., N}tn, =

ipj=1

1o
v/1+ k/100

6 of 12

“*Two Level Monte Carlo

Let’s start with a simple example: Y = Y, + ¥, and we want to estimate

Hoi= py + py, where pi= E(Y), py 1= E(Y)), pp := E(Yy)

using lID samples

/\

R R R 1 n—1 R 1 n,—1
=Ryt oy Hy 3:n—2 Yis ﬂ23:n—2 Y, Yo1, Y115 05 ¥p 0, ¥ 2, 1D
I i=0 2 =0

var(Y;) _+ var(Y,)

3 4%

mse(i) =

and the cost of one Y, is $,. How does one choose n, and n, optimally to
minimize mse(/1)?

/ of 12

%Two Level Monte Carlo

Y=Y + Y5 pui=pu + py p =

==-—-:§:3Kq,/42

=
N
@
=2

|

To optimize make

var(Y,)

nl—l

n2—1

_(Y)v M1 =

=(Y)), iy = E(1)

—Zzz,

YO,I’ Yl,l’ e oo Y()’z, Yl,z, IID

var (Yl) | var (Y2)
TL1 | L9
var(Y- var(Y-
TL1$1 2(1) -+ TL2$2 2(2)
N TL1$1 SN~ n2$2
time spent HA’_/ time spent “=——

on Y; mse (1) per
time spent on Y,

__‘Var(Ya)

ni$,

5%,

on Yo

mse(2) per
time spent on Y5>

8 of 12

e® © o
0".
c'"s

‘3‘30.

Multllevel Monte Carlo

Y=Y +--+Y,u=p+ - +pu,p=0F)pu =EWF,)

. 'Ota-

nf—l
ﬁ:: /jt\l_l‘"“l'///t\ — Z YOl’Yll’ Yoz,Yl’z,,IID
= var(Yi var(Yr
mse(,u) — () e () , $g — cost of one Y,
3 nr.
var(Y; var(Yr
= 8 2(s s 2()
N~ 'TL1§B]_ N 7112581;
time spent S=—— time spent N —
on Y mse(y) per on Yy mse(jrr,) per
time spent on Y; time spent on Y7,
var(Y;) Var(Y;) var(Y,)
To optimize make 5 = .- 5 , 1.8. 1,y X
ni3 np$r \ $,

9 of 12

“#*Multilevel Monte Carlo
» Larger var(Y,) implies larger n,
« Larger $, implies smaller n,
. var(Y,) and $, may need to be estimated by pilot samples

» Ofteny := pu, + --- + p; + A, where A is small but cannot be sampled

. For the optimal sample sizes n, = ¢4/ var(Y,)/$,

total cost(r) = ¢ _\/V&r(Yl) $1 + - 4 /var(Y7) $L_

N 1

mse (/L) = total cost(7) _\/var(Y1)$1 + - 4 \/V&r(YL)$L_

10 of 12

T
R Y

.‘.-'{‘ifi’%?MuItilevel Monte Carlo for co-D Expectations

i = lim E[f(X,.,)], e.g., f, is an option payoff using d time steps

d— o0

Let Y, =1, (X) —f4,_ (Xj.4), for X ~ 210,11%, where f; = 0. Then
H = 43[fd1 (X13d1) — fdo _l_fd2(X11d2) — Jfd (X11d1) T

+ fa, (X1ay) = fap o (X1g,)|+ lim E{fg(X1:0) — fa, (X1:4,)]

o=+ iy, = — Yip, Yo1, Y1155 Yoo, Y10, D

Typically $, o d,. If var(Y,) decays, then MLMC works well by choosing
d, < d, < --- < d; with d; large enough.

11 0of 12

o .o‘.;'oog °
N A
'o“&}g:‘ °

“#Multilevel Monte Carlo for co-D Expectations
p=lim E[f,X,.)1. Y, =f; X) = f; (Xy4). forX ~%[0,1]%,f; = 0.

d— 0
1 n,—1

/jt\ .= //’t\l T oo /jt\b /jt\f .= n_ Z Yif’ Y(),l? Yl,l? e YO,2’ Yl,29 11D
¢ i=0

fd, =m?, var(Y,) < pv’,and $, < yd, = ym?, then

total cost() < ¢ _\/ﬁy vm 4+ - - -+ \/ﬁ”y (vm)L_
= c\ﬂv[(vm)l/2 + -+ (vm)L/Q]

Cl\/_ﬁ \’}% x cost of Y] part, vm < 1
S Y ey/By (wm)T
1/ Jom X cost of Y, part, vm > 1

12 of 12

