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Parallel Computing
Many personal computers now have GPUs built in.  This allows one to perform 
computations in parallel using PyTorch.  Here are some things to keep in mind


• Monte Carlo calculations are pleasantly parallel because the function values 
can be obtained independently, and one can even compute multiple 
expectations independently.


• Calculations on GPUs are typically using 32-bit floating point, not 64-bit 
floating point.  This means that we have about 6 significant digits of accuracy, 
not 15.


• For small problems, GPUs may not be better than CPUs, but for large 
numbers of samples or large numbers of similar problems, the speed-up can 
be impressive.
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Gradient Descent
Optimization problems take the form





Gradient descent updates the estimate of  iteratively by moving downhill:


,


where  is the step size or learning rate.


• This will often converge since  as 


• But it may converge to a local minimum


• This may require more steps than methods that use second derivatives, but 
each step should be cheaper and easier to compute

θ* = argmin
θ ∈ ℝm Loss(θ)

θ*

θ0 given, θk+1 = θk − η∇Loss(θk)

η

∇Loss(θk) → 0 θk → θ*

4



of 12

Stochastic Gradient Descent
Loss function in regression often take the form





The loss to be optimized is a sum of many losses.  If  is large, then the 
gradient is expensive.  An alternative is stochastic gradient descent





where  are chosen IID uniform over , which is cheap.

Loss(θ) =
N

∑
i=1

lossi(θ; data), e.g., lossi(θ; data) = [yi − θ1 exp(θ2xi)]2

N

θ0 given, θk+1 = θk − η∇lossik(θk)

i0, i1, … 1,…, N
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Stochastic Gradient Descent
Loss function in regression often take the form





gradient is expensive.  An alternative is stochastic gradient descent


Loss(θ) =
N

∑
i=1

lossi(θ; data), e.g., lossi(θ; data) = [yi − θ1 exp(θ2xi)]2

<latexit sha1_base64="k8J9UD+3eEH2t3+iSlpZtm5Q6X4="></latexit>

vanilla ωk+1 = ωk → ω↑lossik(ωk)

decaying ω ωk+1 = ωk → ωk↑lossik(ωk), ωk =
ω0√

1 + k/100

mini-batch ωk+1 = ωk → ω
1

B

B∑

ikj=1

↑lossikj (ωk), ikj
IID↓ U {1, . . . , N}

mini-batch + decay ωk+1 = ωk → ωk
1

B

B∑

ikj=1

↑lossikj (ωk), ikj
IID↓ U {1, . . . , N} ωk =

ω0√
1 + k/100
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Two Level Monte Carlo
Let’s start with a simple example:   and we want to estimate 


, where , , 


using IID samples








and the cost of one  is .  How does one choose  and  optimally to 
minimize ?

Y = Y1 + Y2

μ := μ1 + μ2 μ := 𝔼(Y) μ1 := 𝔼(Y1) μ2 := 𝔼(Y2)

̂μ := ̂μ1 + ̂μ2, ̂μ1 :=
1
n1

n1−1

∑
i=0

Yi1, ̂μ2 :=
1
n2

n2−1

∑
i=0

Yi2, Y0,1, Y1,1, …, Y0,2, Y1,2, IID

mse( ̂μ) =
var(Y1)

n1
+

var(Y2)
n2

Yℓ $ℓ n1 n2
mse( ̂μ)
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Two Level Monte Carlo
, , , , 








To optimize make 

Y = Y1 + Y2 μ := μ1 + μ2 μ := 𝔼(Y) μ1 := 𝔼(Y1) μ2 := 𝔼(Y2)

̂μ := ̂μ1 + ̂μ2, ̂μ1 :=
1
n1

n1−1

∑
i=0

Yi1, ̂μ2 :=
1
n2

n2−1

∑
i=0

Yi2, Y0,1, Y1,1, …, Y0,2, Y1,2, IID
<latexit sha1_base64="AF5OfnskzPSDlC2UmWcoRc9GRyg="></latexit>

mse(µ̂) =
var(Y1)

n1
+

var(Y2)

n2

= n1$1︸︷︷︸
time spent

on Y1

var(Y1)

n2
1$1︸ ︷︷ ︸

mse(µ̂1) per
time spent on Y1

+ n2$2︸︷︷︸
time spent

on Y2

var(Y2)

n2
2$2︸ ︷︷ ︸

mse(µ̂2) per
time spent on Y2

var(Y1)
n2

1$1
=

var(Y2)
n2

2$2
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Multilevel Monte Carlo
, , , 








To optimize make , i.e. 

Y = Y1 + ⋯ + YL μ := μ1 + ⋯ + μL μ := 𝔼(Y) μℓ := 𝔼(Yℓ)

̂μ := ̂μ1 + ⋯ + ̂μL ̂μℓ :=
1
nℓ

nℓ−1

∑
i=0

Yi1, Y0,1, Y1,1, …, Y0,2, Y1,2, …, … IID
<latexit sha1_base64="b4tGYArVY/uvOf3ZFKHARQmUjFA="></latexit>

mse(µ̂) =
var(Y1)

n1
+ · · ·+ var(YL)

nL
, $ω = cost of one Yω

= n1$1︸︷︷︸
time spent

on Y1

var(Y1)

n2
1$1︸ ︷︷ ︸

mse(µ̂1) per
time spent on Y1

+ · · ·+ nL$L︸ ︷︷ ︸
time spent

on YL

var(YL)

n2
L$L︸ ︷︷ ︸

mse(µ̂L) per
time spent on YL

var(Y1)
n2

1$1
= ⋯ =

var(YL)
n2

L$L
nℓ ∝

var(Yℓ)
$ℓ
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Multilevel Monte Carlo
• Larger  implies larger 


• Larger  implies smaller 


•  and  may need to be estimated by pilot samples


• Often , where  is small but cannot be sampled


• For the optimal sample sizes 


var(Yℓ) nℓ

$ℓ nℓ

var(Yℓ) $ℓ

μ := μ1 + ⋯ + μL + Δ Δ

nℓ = c var(Yℓ)/$ℓ
<latexit sha1_base64="Tzv6kaxcEmHzRVT1FY3UvItzzKQ="></latexit>

total cost(µ̂) = c
[√

var(Y1) $1 + · · ·+
√

var(YL) $L
]

mse(µ̂) =
1

total cost(µ̂)

[√
var(Y1)$1 + · · ·+

√
var(YL)$L

]2
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Multilevel Monte Carlo for -D Expectations∞
, e.g.,  is an option payoff using  time steps


Let , for , where .  Then








Typically .  If   decays, then MLMC works well by choosing 
 with  large enough.

μ = lim
d→∞

𝔼[ fd(X1:d)] fd d

Yℓ = fdℓ
(X) − fdℓ−1

(X1:dℓ−1
) X ∼ 𝒰[0,1]dℓ fd0

= 0
<latexit sha1_base64="/lK6CmmhrLyTlLN50CwVagY6tFM="></latexit>

µ = E[fd1(X1:d1)→ fd0︸ ︷︷ ︸
Y1

+ fd2(X1:d2)→ fd1(X1:d1)︸ ︷︷ ︸
Y2

+ · · ·

+ fdL(X1:dL)→ fdL→1(X1:dL→1)︸ ︷︷ ︸
YL

] + lim
d→↑

E[fd(X1:d)→ fdL(X1:dL)]

̂μ := ̂μ1 + ⋯ + ̂μL, ̂μℓ :=
1
nℓ

nℓ−1

∑
i=0

Yiℓ, Y0,1, Y1,1, …, Y0,2, Y1,2, IID

$ℓ ∝ dℓ var(Ydℓ
)

d1 < d2 < ⋯ < dL dL
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Multilevel Monte Carlo for -D Expectations∞
, , for , . 





If , , and , then


μ = lim
d→∞

𝔼[ fd(X1:d)] Yℓ = fdℓ
(X) − fdℓ−1

(X1:dℓ−1
) X ∼ 𝒰[0,1]dℓ fd0

= 0

̂μ := ̂μ1 + ⋯ + ̂μL, ̂μℓ :=
1
nℓ

nℓ−1

∑
i=0

Yiℓ, Y0,1, Y1,1, …, Y0,2, Y1,2, IID

dℓ = mℓ var(Yℓ) ≤ βvℓ $ℓ ≤ γdℓ = γmℓ

<latexit sha1_base64="onIj2K5FPvEvnQAYQ6vGJcFa30c="></latexit>

total cost(µ̂) → c
[√

ωε vm+ · · ·+
√

ωε (vm)L
]

= c
√
ωε

[
(vm)1/2 + · · ·+ (vm)L/2

]

→






c
→
ωε vm

1↑
→
vm

↑ cost of Y1 part, vm < 1
c
↓

ωε (vm)L

1↑1/
→
vm

↑ cost of YL part, vm > 1
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